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Abstract

Background: The development and application of Artificial Intelligence (AI) and Machine Learn-

ing (ML) in healthcare have gained attention as a promising and powerful resource to change the

landscape of healthcare. The potential of these technologies for injury prediction, performance

analysis, personalized training, and treatment comes with challenges related to the complexity

of sports dynamics and the multidimensional aspects of athletic performance.

Objectives: We aimed to present the current state of AI and ML applications in sports science,

specifically in the areas of injury prediction, performance enhancement, and rehabilitation. We

also examine the challenges of incorporating AI and ML into sports and suggest directions for

future research.

Method: We conducted a comprehensive literature review, focusing on publications related to AI

and ML applications in sports. This review encompassed studies on injury prediction, perfor-

mance analysis, and personalized training, emphasizing the AI and ML models applied in sports.

Results: The findings highlight significant advancements in injury prediction accuracy, perfor-

mance analysis precision, and the customization of training programs through AI and ML.
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However, future studies need to address challenges such as ethical considerations, data quality,

interpretability of ML models, and the integration of complex data.

Conclusion: AI and ML may be useful for the prevention, detection, diagnosis, and treatment of

health conditions. In this Masterclass paper, we introduce AI and ML concepts, outline recent

breakthroughs in AI technologies and their applications, identify the challenges for further prog-

ress of AI systems, and discuss ethical issues, clinical and research opportunities, and future per-

spectives.

© 2024 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Published by Elsevier

España, S.L.U. All rights are reserved, including those for text and data mining, AI training, and

similar technologies.

Introduction

Engaging in regular physical activity is important for all
ages.1,2 The reasons why people seek a physically active life-
style vary and may include leisure, competition, socializa-
tion, maintenance and improvement of fitness and health.3

Sports practice is an important way for achieving an active
lifestyle. However, physical activity- and sports-related inju-
ries are considered major ‘adverse events’ of such practice.
Data from an emergency department in Ireland, showed
that sports injuries accounted for 14% of all attendances
over 6 months, yielding a negative impact in people’s lives
and long-term consequences.4 Furthermore, approximately
4.3 million nonfatal sports or recreation-related injuries are
seen annually in the emergency department in the US, spe-
cifically affecting children and adolescents.5

The balance between optimal athletic performance and
prevention of sports-related injuries is of primary impor-
tance for sports staff members and society.6 However,
understanding the interaction and contribution of several
factors (e.g., biophysical, social, psychological, cultural,
and environmental) to sports-related injury etiology as well
as developing, evaluating, and implementing prevention
strategies remain major challenges in the field of Sports and
Exercise Medicine (SEM).7 In general, individual factors are
assumed to have a linear and unidirectional contribution to
sports injuries.7,8 This narrow approach relies on correlation
and regression analyses and, despite the vast effort to pre-
dict sports injuries, it has been limited in its ability to suc-
cessfully identify predictive factors.7 Recently, complex
systems approaches have been suggested to aid in under-
standing the multifactorial complex nature of sports inju-
ries.7 Complex systems consider that a phenomenon (e.g.,
injury) occurs not from the linear interaction between iso-
lated factors, but from the complex, dynamic, and non-lin-
ear interaction among a web of determinants (for a review
see Fonseca et al.7 and Bittencourt et al.8). In this sense,
sports injuries occur in dynamic environments and can be
referred to as complex problems.9

With the advances in processing power, memory, storage,
and real-time data acquisition, computers can help to solve
complex problems. In this aspect, artificial intelligence (AI)
is widely accepted as a technology offering an alternative
way to tackle complex problems. AI is a branch of computer
science that is broadly defined as “mimicking human cogni-

tion using machines and/or computer science techniques”.10

Machine Learning is a subdiscipline of AI in which computer
algorithms learn from large datasets and identify interaction
patterns among variables without human interference.11 AI

is gradually changing the landscape of healthcare and bio-
medical research, especially in prediction and diagnosis, but
also regarding treatment efficiency and outcome prediction,
drug discovery and repurposing, epidemic outbreak predic-
tion, and precision health.12 Thus, there is a plethora of
opportunities for AI in the fields of ‘Sport Sciences’ and SEM.
In fact, some leagues such as the National Football League
(NFL), Major League Baseball (MLB), and German Football
League (DFL) have been hosting several ‘competitions’ on
Kaggle website (www.kaggle.com), looking to solve real-
world problems using AI or Big Data analytics. In this master-
class, we aim to introduce the concepts, applications, chal-
lenges, and future of AI in the context of sports.

Concepts and terminology of AI and Machine
Learning

The term AI is not new. The first use of the term AI was in a
Computer Science Conference in 1956.13 Although there is
no well-endorsed definition in the literature, AI can be
understood as a technology with the ability to respond to
environmental information (or new data) and then change
its operation to maximize performance mimicking the prob-
lem-solving and decision-making capabilities of the human
mind.13

Recent interest in AI has been driven by advances in
Machine Learning. Machine Learning is a subfield of AI that
develops algorithms (using mathematics, statistics, logic,
and computer programming) with the ability to identify pat-
terns in data that automatically improve from experience,
that is, without being specifically programmed.13 Machine
Learning approaches fall into four categories: supervised
learning, unsupervised learning, semi-supervised learning,
and reinforcement learning. Learning methods, definitions,
and models are presented in Table 1.

Claudino et al.14 reviewed the literature on Machine
Learning models used in sports to predict injury risk and
sport performance and found 171 publications in the field of
signal processing, 161 publications in the field of image proc-
essing, 151 on modelling and planning, and 57 on user inter-
action. Artificial Neural Network was the most common
technique used in both injury risk (representing 10%) and
sports performance (representing 26%) models. The decision
tree classifier and support vector machine were the next
most commonly used techniques, each representing 5% of
injury risk assessment. Regarding sports performance pre-
diction, the decision tree classifier was used in 17% of cases,
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Table 1 Machine Learning techniques.

Learning category Definition Target variable Methods Examples of techniques

Supervised Supervised learning

works by collecting

many ‘training’ cases

and the desired out-

put labels. By analyz-

ing the patterns in all

labelled input�output

pairs, the algorithm

learns to produce the

correct output for a

given new case.13

Labeled (known out-

put)

Variable type:

continuous

Regression � Simple and multiple

linear regression
� Polynomial regression
� LASSO and Ridge

regression

Labeled (known out-

put)

Variable type:

categorical

Classification � Naive Bayes
� Linear Discriminant

Analysis
� Logistic regression
� K-nearest neighbors

(KNN)
� Support vector

machine (SVM)
� Decision tree
� Random forest
� Adaptive Boosting

(AdaBoost)
� Extreme gradient

boosting (XGBoost)
� Stochastic gradient

descent (SGD)
� Rule-based

classification

Labeled (known out-

put)

Variable type:

numeric, dichoto-

mous, categorical

Artificial Neural Net-

work and Deep

Learning

� Multilayer Perceptron
� Convolutional Neural

Network
� Long Short-Term Mem-

ory Recurrent Neural

Network

Unsupervised Unsupervised learning

analyzes unlabeled

datasets without

human interference.

It is used for extract-

ing generative fea-

tures, identifying

meaningful trends and

structures, groupings

in results, and explor-

atory purposes.13

Unlabeled

(unknown output)

Clustering � Partitioning methods
� Density-based

methods
� Hierarchical-based

methods
� Grid-based methods
� Model-based methods
� Constraint-based

methods
� K-means clustering
� Density-based spatial

clustering of applica-

tions with noise

(DBSCAN)
� Gaussian mixture mod-

els (GMMs)

Association Rule

Learning

� Artificial immune sys-

tem (AIS)
� Apriori
� FP-Growth
� ABC-RuleMiner

Dimension Reduction

and Feature Learning

� Feature selection
� Feature extraction
� Variance threshold
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Table 1 (Continued)

Learning category Definition Target variable Methods Examples of techniques

� Pearson correlation
� Analysis of variance

(ANOVA)
� Recursive feature

elimination (RFE):
� Model-based selection
� Principal Component

Analysis (PCA)

Semi-supervised It combines super-

vised and unsuper-

vised learning (e.g.,

situations where col-

lected data presents

labeled and unlabeled

outputs).13

Labeled and unla-

beled data

Classification � Naive Bayes
� Linear Discriminant

Analysis
� Logistic regression
� K-nearest neighbors

(KNN)
� Support vector

machine (SVM)
� Decision tree
� Random forest
� Adaptive Boosting

(AdaBoost)
� Extreme gradient

boosting (XGBoost)
� Stochastic gradient

descent (SGD)
� Rule-based

classification

Clustering � Partitioning methods
� Density-based

methods
� Hierarchical-based

methods
� Grid-based methods
� Model-based methods
� Constraint-based

methods
� K-means clustering
� Density-based spatial

clustering of applica-

tions with noise

(DBSCAN)Gaussian

mixture models

(GMMs)

Reinforcement In reinforcement

learning, an agent

needs to take an

action in a given envi-

ronment. The agent

evaluates the optimal

behavior based on

immediate reward.

The goal is to increase

long-term reward and

reduce the risk.14,15

Interaction with the

environment

Positive

Reinforcement

� Monte Carlo

techniques
� Q-learning
� R-learning

Negative

Reinforcement
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while the Markov process and support vector machine were
used in 9%. Soccer had the highest percentage of studies
(12%) applying AI for injury risk assessment, followed by bas-
ketball, American football, Australian football, and team
handball (each with 3%). Basketball had the highest percent-
age (19%) of studies using AI for performance prediction, fol-
lowed by soccer (14%) and volleyball (9%).

Artificial intelligence applications in sports

Clinical opportunities

The wealth of data now available, including personal, clini-
cal, and real-world data, together with continuous biomet-
ric monitoring, Internet of Things (e.g., wearables), cloud
storage, computing capabilities, and the super-fast speed of
data processing are ideally suited to enhance AI-generated
predictive models, complex system analyses, and decision-
making support. These opportunities may have particular-
ities regarding their applications when considering research
and/or sports/clinical practice. In what follows, we summa-
rize possible applications of AI in sports.

Prediction of injuries and poor performance

In general, explaining sports practice phenomena is chal-
lenging due to their complicated or complex nature.7,8 AI
methods, based on training load, performance techniques,
biokinetics, physiological and psychological data, and non-
modifiable metrics such as anthropometric measurements,
injury history, and genetic markers, can be used to tailor
training programs to individual requirements, to reduce the
risk of injuries, and to enhance overall athletic perfor-
mance. In addition, AI models are now capable of continu-
ously analyzing incoming data, thereby alerting athletes or
clinicians when the risk of injury and/or performance
reaches a predetermined threshold. Studies in the literature
show the use of sensors to: (i) monitor variables (e.g., force,
displacement, and velocity) to improve sport technique; (ii)
to develop an in-game decision-making that calculates prob-
abilities and selects optimal strategies; and (iii) to monitor
mental health.15,16

Enable a complex systems approach to SEM

A complex systems approach may be considered the ‘next
step’ in ‘model development and validation’ in the fields of
‘Sport Sciences’ and SEM,7,8,17 because of the recognition of
the complexity related to sports performance,18�20

management,18,21,22 and the athletes’ health.18,23�26 Plsek
and Greenhalgh27 defined a complex system as “a collection

of individual agents with freedom to act in ways that are

not always totally predictable, and whose actions are inter-

connected so that one agent’s actions changes the context

for other agents”. Characteristics of complex systems
include non-linearity, non-holonomic (fuzzy) constraints,
unpredictability, hierarchy, interaction, emergence, inter-
nalized rules and asymmetry, adaptability, self-organization,
and overall pattern.7,8,28,29 Characteristics such as ‘emer-
gence’, ‘adaptability’, and ‘self-organization’ may refer to
a sort of ‘intelligence’ of complex systems. Therefore,
efforts to develop and/or to validate sports phenomena
under the complex systems approach may benefit from AI

methods, especially those related to machine/deep learning
algorithms. Other computational methods that may be used
to model complex systems in sports include ‘agent-based
modelling’ (ABM) and ‘systems dynamics’ (SD).29

Identification/diagnosis of sports injuries

A lot of attention has been placed toward the identification
and/or diagnosis of sports injuries in the field of SEM. Moni-
toring,30 classification,31,32 prediction,33,34 and imaging35,36

are examples of AI application to the field. Imaging may be
the most promising application regarding the identification
and/or diagnosis of sports injuries, because existing algo-
rithms have shown similar identification/diagnostic capabili-
ties compared to human experts.35,36 Moreover, providing
model predictions to experts may improve experts diagnos-
tic capabilities compared to not providing model predictions
to experts.36

Data analysis from wearables

Wearables may create opportunities for AI research in ‘Sport
Sciences’ and SEM fields mainly in two ways: (1) collecting,
monitoring, and providing data24; and (2) providing real
time feedback based on collected data.15,37 Therefore,
wearables may help in Big Data development and also in
communicating information to the athletes, coaches, health
professionals, and/or stakeholders. Depending on the way
this communication is performed, behavior change related
to sports may be achieved.38

Automation of individual monitoring

A very desirable application of AI is the automation of pro-
cesses due to its ability to save time, human work, and
resources especially for repeated tasks. Because people usu-
ally increase their engagement in physical activity or pre-
vention programs when monitored, this process could be
automatized by the integration of chatbots based on natural
language processing. In addition, the automation and inte-
gration of linear and predictable processes with data col-
lected from chatbots and wearables can be applicable for
training management and advice,39,40 performance,14 injury
risk assessment,14,41 and injury prevention.42�45

Real-time body movement feedback

A significant innovation in clinical practice through AI is the
development of digital therapies. The use of computer vision
or sensors to measure body movement can be employed to
analyze video recordings of athletes’ exercise. In this appli-
cation, algorithms are employed to meticulously track body
movements, posture, and alignment. This allows for the pro-
vision of real-time feedback on the athletes’ exercise tech-
nique enhancing the accuracy of the exercises
performed.15,46 Digital therapies are promising applications,
mainly for personalizing sports injury prevention and reha-
bilitation programs.

Model development and validation

Explaining sports practice phenomena is challenging due to
their complicated or complex nature, in general.7,8,17,21,23

One approach to achieve such purpose would be ‘simplify-
ing’ or reducing the levels of complexity to generate simple
and specific ‘rules’ that could resemble the actual phenome-
non under investigation when combined. Although
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considered a ‘reductionist’ approach, it contributes to a
large extent in building knowledge when there is no substan-
tial prior knowledge on the actual phenomenon under inves-
tigation. This approach has been employed when
researchers begin to study and/or to explore, for example,
classification problems,31 risk factors,47 etiology models,48

prediction models,49 etc. Therefore, emerging new exer-
cises/sports or understudied sports areas could benefit from
such methods during the first stages of building knowledge
in a specific topic.

Broader applications in sports

The application of AI in sports is of interest to all sports
industry segments,50 and the AI sports industry market has
been growing.51 The main purpose of using AI in sports and/
or clinical practice is to provide information and/or knowl-
edge for helping in the decision-making process. There are
plenty of opportunities for AI applications in sports/clinical
practice, such as: stadium/facilities industry (e.g., systems
for athletes and/or fans monitoring, camera systems for
broadcasting, fans statistics); sports competition industry
(e.g., match/events outcome prediction, tactical decision-
making, players investments, tracking using wearables,
eSports); sports training industry (e.g., monitoring, automa-
tion, real-time feedback, tailored counselling, wearables,
systems integration for data summary from different sour-
ces); sports media industry (e.g., journalism, chatbots,
robots controlling sports media coverage, audience content
creation/recommendations/management, audience
engagement, augmented audience experience, message
optimization, content management); sports education (e.g.,
sports training systems, monitoring, automated
feedback).35,36,51�56 However, to tackle these opportunities
it is necessary to have a qualified work force and personnel.
The sports research and sports industry growth has created a
demand for sports biostatistician, data scientists, and other
related professionals, also creating job opportunities and
providing career paths.50

We provide examples of potential applications of AI based
on learning category and methods in Table 2.

Research opportunities

A fruitful field for opportunities in AI for ‘Sport Sciences’ and
SEM is the research field. Future research on sports AI-based
technologies should concentrate efforts in: (1) developing and
making available Big Data database structures and procedures
for data mining and storage; (2) model development and vali-
dation to a specific context, and adaptation to new/different
contexts (external validity); (3) complex systems investigation;
(4) enhancing the accuracy on the identification and/or diag-
nosis of sports-related injuries, including clinical data and
imaging; (5) developing and investigating automation of pro-
cesses, including training management and sports injury pre-
vention; (6) the development and validation of wearable
technologies; (7) technology acceptability and usability by
coaches, athletes, and stakeholders; (8) Machine Learning
model explainability; (9) developing a frameworks/checklists
for the assessment of Machine Learning models by non-special-
ized professionals; (10) fostering research-industry collabora-
tions to leverage existing industrial data resources for sports
science research. This includes partnering with sports technol-
ogy companies and fitness industries to access, utilize, and
analyze their datasets for advancing sports-related AI applica-
tions and innovations.

Challenges and ethical considerations

Although the use of AI-based solutions in sports is growing,
there are diverse challenges to their successful implementa-
tion. AI systems have complex life cycles, including data acqui-
sition, training, testing, clinical implementation, ethical, and
social issues. This section explores some challenges that may
be paramount to the appropriate and optimal use of AI.

Table 2 Examples of possible clinical applications according to Machine Learning techniques.

Examples of possible clinical applications Example of AI learning

category (Method)

Injury Risk Prediction: Estimating the likelihood of injuries based on athlete’s training load,

previous injury history, and physical fitness levels (e.g., the model considers each player’s

training load, history of previous injury [types and frequencies of past injuries], and physical

fitness levels [strength, flexibility, etc.]). For a player who has recently increased their

training load and has a history of injuries, the model might predict a higher risk of re-injury.

Supervised (Regression)

Athlete Health Status: Identifying athletes at risk of overtraining or stress-related conditions

(e.g., if athlete’s data show unusually high training loads, poor sleep quality, and signs of

psychological stress, the model could classify them as at higher risk of overtraining).

Supervised (Classification)

Movement Analysis: Assessing athletes’movement patterns to predict and prevent potential

injuries.

Supervised (Artificial Neural

Network and Deep Learning)

Athlete Segmentation: Grouping athletes based on performance metrics or injury risk profiles

to tailor training and rehabilitation programs (e.g., athletes could be grouped based on their

agility test scores, history of ankle injuries, and training load data and, as a result, the team

might identify a cluster of players with higher agility but also with higher risk of ankle inju-

ries).

Unsupervised (Clustering)

Heatmap Generation: Analyzing player movement data to create heatmaps that visualize

player density and positioning during games, aiding in tactical analysis.

Semi-supervised (Clustering)

AI: Artificial Intelligence.
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The first challenge is data availability. In general,
Machine Learning methods heavily depend on the nature
and the characteristics of data collected to work effectively
and efficiently.57 In addition to the need of sufficient data to
work properly, Machine Learning requires external validity
and continuous availability of data with progressively larger
datasets.58 Thus, monitoring performance and retraining of
Machine Learning models (robustness) should be considered
from the beginning. Considering that the availability of data
may be expensive, there is a need to advance data share-
ability and reusability. Shareability and reusability can con-
tribute to transfer learning (i.e., due to similarities among
some sports, a model trained on a sport-specific data can be
tested in another).59,60 Biases on data (unfairness) have
been reported and it can lead to biased trained Machine
Learning models.61 In these cases (e.g., racial bias), minori-
ties are underrepresented contributing to lower prediction
performance. To mitigate biases in data, particularly those
affecting underrepresented groups, it is proposed: (i) to
determine the availability of diverse populations; (ii) to con-
sider diversity in model design while framing hypotheses;
(iii) to use recommended preprocessing bias mitigation tech-
niques; (iv) to perform regular assessment of model perfor-
mance across different demographic groups; (v) to engage
with diverse domain experts, multidisciplinary teams, and
community members; and (vi) to maintain transparency in
reporting data sources.62 Also, most of the available Machine
Learning studies in the literature have poor methodological
quality. Efforts to improve the design, conduction, report-
ing, and validation of Machine Learning studies are neces-
sary to bridge the gap towards its application in clinical
practice.63

Explainability of Machine Learning models (i.e., results of
a used method must be interpretable for humans) is another
challenge.64 Currently, many Machine Learning models may
be considered ‘black boxes.’ The lack of transparency of
‘black box’ approaches hinders independent evaluation of
model performance, interpretability, utility, and generaliz-
ability prior to implementation.65 To enhance the explain-
ability of Machine Learning models in sports AI, researchers
can integrate techniques such as model simplification and
employ explainability frameworks such as Local Interpret-
able Model-Agnostic Explanations (LIME) or SHapley Additive
exPlanations (SHAP) to provide insights into model decision
processes. Furthermore, incorporating visualizations, prac-
tical examples, and interpretable reports in model outputs
can aid non-expert users in comprehending the results.66,67

Regulatory guidance, liability, legal responsibility, and
ethical considerations must be in the mind of those in charge
of designing, conducting, and implementing AI-based appli-
cations in any field, thus also in sports. Some standard and
general ethics considerations applicable to AI include68: (1)
honesty; (2) truthfulness; (3) transparency; (4) benevolence
and non-malevolence; (5) human dignity, autonomy, privacy,
and safety; and (6) justice. However, moral values and ethi-
cal standards are context-specific and, therefore, they
might differ among populations, such as countries, regions,
ethnic groups, etc.

Context-specific ethical aspects beyond those described
here might be worth consideration, and the sports professio-
nals and researchers must be aware of such aspects and
preferably they should discuss AI-related ethical issues with

other collaborators, stakeholders, coaches, health profes-
sionals, athletes, and/or end-users, when applicable, to
ensure that AI applications comply with the required ethical
standards. Therefore, it is essential to adopt comprehensive
measures for protecting sensitive information, such as: (i)
evaluating transparency and effectiveness in obtaining user
consent for data collection and processing activities; (ii)
ensuring AI systems comply with laws and regulations gov-
erning personal data privacy; (iii) data minimization, ano-
nymization, and de-identification techniques; (iv)
implementing robust access controls and encryption mecha-
nisms; and (v) conducting privacy impact assessments to
identify and address privacy risks.69,70

Future perspectives

Industry 4.0, often referred to as the fourth industrial revo-
lution, integrates intelligent digital technologies into
manufacturing and industrial processes. It represents a
transformative shift in how technology is embedded in
industries, enhancing efficiency and connectivity.71 This
concept, first introduced in Hanover, Germany, in 2011,
serves as a model for subsequent initiatives like Health
4.0.72 Health 4.0 integrates innovative technologies such as
the Internet of Health Things (IoHT), medical CyberPhysical
Systems (medical CPS), health cloud, health fog, Big Data
analytics, Machine Learning, and blockchain to enhance
individualized prevention, diagnosis, treatment, and public
health.73

Similarly, Sports 4.0 has the potential to tailor and imple-
ment foundational principles from Industry and Health 4.0,
including: (i) interoperability (allowing different devices and
systems to connect); (ii) virtualization (creating digital mod-
els of systems and processes); (iii) decentralization (enabling
self-governing systems); (iv) real-time capability for prompt
data gathering and analysis; (v) service orientation to develop
software for interacting with devices; and (vi) modularity
(enhancing specific components for meeting new require-
ments and reusing available modules to build new sports sys-
tems).74 These features in Sports 4.0 could change the SEM
field by supporting personalized injury prevention, diagnosis,
management, training, and rehabilitation, focusing on a coor-
dinated and individual-centric care to optimize health out-
comes and encourage physical activity.
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