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A B S T R A C T

Background: Differences in walking biomechanics between women and men with patellofemoral joint (PF) 
osteoarthritis (OA) may contribute to the development or progression of persistent symptoms in people with PF 
OA.
Objective: Evaluate how walking biomechanics of women with PF OA differ from: (i) men with PFJ OA; and (ii) 
women without PF OA. Second, explore the relationship between knee-related symptoms/function and walking 
biomechanics in individuals with PF OA, and whether these are modified by sex.
Methods: Sixty-seven individuals with PF OA (43 women) and 14 women without PF OA were included. 
Biomechanics data were recorded during walking. Patient-reported symptoms and function were obtained using 
the Knee injury and Osteoarthritis Outcome Score. Differences in continuous biomechanical data were assessed 
using statistical parametric mapping, with discrete data and relationships evaluated using linear models.
Results: Women with PF OA walked with a greater hip adduction angle throughout stance (t > 2.757) and lower 
impulses for the hip flexion, knee flexion, and ankle dorsiflexion moments (adjusted mean differences [95% 
CI]:3.3 × 10–2 [-4.9 × 10–2, -1.6 × 10–2], -2.9 × 10–2 [-5.3 × 10–2, -0.4 × 10–2], -5.1 × 10–2 [-8.2 × 10–2, -2.0 ×
10–2] Nms/kg, respectively) compared to men with PF OA. Compared to their asymptomatic peers, women with 
PF OA displayed a 5◦ offset towards greater hip flexion. Higher knee adduction moment impulse correlated with 
worse KOOS-ADL scores in men, not women.
Conclusion: Observed biomechanical differences were small in nature with moderate to weak relationship 
observed with the KOOS. Findings were not limited to the knee, indicating that women with PF OA display 
unique biomechanical features across the kinetic-chain.

Introduction

Patellofemoral joint (PF) osteoarthritis (OA) is present in approxi-
mately one-half of individuals with knee pain or tibiofemoral joint (TF) 
OA.1 It is associated with considerable symptoms, functional limitations, 
and poor quality of life.2-4 Mechanical loading is thought to underpin the 
development and progression of OA,5 hence it is conceivable that altered 
lower-limb biomechanics during common activities of daily living, such 
as walking may play a role in the development and/or progression of PF 
OA.6,7

Studies have found features of PF OA to be sex-dependent. For 
example, women have a higher prevalence of isolated PF OA,8,9 and 
report more knee pain and disability than men.10 Sex differences have 
been observed in PF biomechanics in human cadavers,11 and in healthy 
participants during running.12 Moreover, biomechanical risk factors for 
PF pain development vary between women and men.13 These findings 
would suggest that sex is likely to influence the relationship between PF 
OA and walking biomechanics, consistent with what has been observed 
in people with TF OA,14,15 PF pain,16 and hip-related pain.17-19

Several studies have evaluated walking biomechanics in people with 
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and without PF OA but have so far yielded mostly inconsistent results. 
Teng et al.20 found a higher peak knee flexion moment and impulse as 
well as peak PF pressure during the second half of stance in those with 
isolated PF OA compared with controls. Crossley et al.21 did not find any 
differences in knee and ankle joint angles during walking between in-
dividuals with and without PF OA, but found those with PF OA to display 
increased anterior pelvic tilt, contralateral pelvic drop, and hip adduc-
tion angles as well as a decreased hip extension angle. In contrast, Pohl 
et al.22 found no differences in contralateral pelvic drop, hip adduction, 
and hip internal rotation angles during walking between individuals 
with and without PF OA. Although two of these studies considered sex as 
a confounder within their analyses,20,21 none specifically explored sex as 
an effect modifier. If sex modifies the relationship between PF OA and 
walking biomechanics, it is possible that previous studies may have 
overlooked this effect, which could be one reason for the inconsistent 
findings. Further scrutiny regarding the influence of sex on the rela-
tionship between PF OA and walking biomechanics is therefore 
warranted.

It is also possible that differences in walking biomechanics between 
women and men may influence the development or progression of 
structural joint changes and symptom persistency in people with PF OA. 
For example, women without clinical knee OA have greater PF cartilage 
volume loss over time compared with men,23 and a lower step rate is 
associated with greater worsening of PF cartilage damage in women but 
not in men.24 These sex-dependent findings, in conjunction with women 
with PF OA reporting greater knee pain severity,10,25 highlight the po-
tential for the condition to affect men and women differently. With these 
points in mind, our study aims were twofold. First, to explore how the 
walking biomechanics of women with PF OA differ from: (i) men with PF 
OA; and (ii) women without PF OA. Second, to explore the relationship 
between walking biomechanics and knee-related symptoms/function in 
individuals with PF OA, and whether these are modified by sex. It was 
hypothesised that the walking biomechanics of women with PF OA 
would display both sex- and pathology-based effects and that sex would 
influence the relationship between walking biomechanics and 
knee-related symptoms/function in individuals with PF OA.

Methods

Design and participants

A cross-sectional design was employed using baseline data from a 
subset of individuals with PF OA from a previous randomized controlled 
trial.26 Individuals with PF OA were included if they were aged 40 years 
or over; had anterior – or retro-patellar pain severity of ≥4/10 during at 
least two PF loading activities on most days over the preceding month; 
and exhibited radiographic evidence of lateral PF OA (Kellgren and 
Lawrence27 Diagnostic Criteria [KL] ≥128–29). Control women partici-
pants were concurrently recruited and eligible to participate if they were 
aged 40 years or over, had no knee or lower limb symptoms or pain, and 
had no radiographic evidence of TF or PF OA (i.e., KL<2).28 Exclusion 
criteria for all participants were: concomitant pain and/or symptoms 
from other knee structures, hips, or the lumbar spine; body mass index 
(BMI) ≥35kg/m2; previous lower limb osteotomy or arthroplasty; intra- 
or extra-articular knee joint injection in the preceding three months; 
radiographic TF OA (KL>2); unable to undertake study testing proced-
ures; neurological or other conditions; and unable to understand spoken 
and written English. The study received ethical approval from the Uni-
versity of Melbourne Human Research Ethics Committee (HREC 
0721163), and all participants provided written informed consent 
before participating.

Radiographs and OA classification

To confirm eligibility, all participants underwent a semi-flexed, 
posteroanterior weight-bearing, and skyline radiograph that were 

graded by two trained individuals using the KL grading system27 which 
has been previously found to be reliable (κ 0.745 to 0.843).29,30

Participant demographics and patient-reported outcome measures

Participant demographic data, including age, height, and body mass, 
were recorded, and individuals with PF OA completed the Knee Injury 
and Osteoarthritis Outcome Score (KOOS)31 prior to biomechanical 
testing. The KOOS evaluates the five subscales of Pain, Symptoms, 
Function in Daily Living (ADL), Function in Sport and Recreation 
(Sport/Rec), and Knee-related Quality of Life (QOL) over the previous 
week.31

Biomechanical data collection

Biomechanical data collection was conducted at the The University 
of Melbourne. For testing, participants wore loose-fitting running shorts 
and Nike Straprunner sandals to allow adequate exposure of foot bony 
landmarks for marker placement. Opto-reflective markers were affixed 
to the participant’s pelvis and lower limbs using a previously published 
protocol.32 Trajectories of the opto-reflective markers were recorded at 
120 Hz using a nine-camera motion capture system (Vicon Motion 
Systems, UK), while ground reaction force (GRF) data were measured at 
1080 Hz via three force platforms (AMTI, USA) embedded in the labo-
ratory floor. All participants were required to complete at least three 
successful walking trials across a 10 m walkway through the labo-
ratory’s capture volume. A successful trial occurred when the partici-
pant achieved a single-foot contact in the middle of the force plate.

A seven-segment biomechanical model was used to calculate lower- 
limb joint angles and moments, with anatomical coordinate systems 
defined as previously outlined.33 A joint coordinate system convention 
was used to calculate lower-limb joint kinematics.34 Net joint moments 
were calculated using inverse dynamics, normalized to body mass 
(Netwon metres per kilogram; Nm/kg) and expressed in the same 
non-orthogonal joint coordinate system as the calculated hip, knee, and 
ankle joint angles. Each joint moment was reported as the external joint 
moment.33 We also calculated the impulse of each joint moment by 
taking the integral of the moment vs time curve across the stance phase 
of gait and expressed it as Newton metre seconds per kilogram 
(Nms/kg). The cumulative positive and negative impulses were calcu-
lated at each joint.

Biomechanical variables of interest

To address the study’s aims, sagittal and frontal plane kinematic 
(joint angles) and kinetic (joint moments and corresponding impulses) 
at the hip, knee, and ankle during the stance phase were selected as the 
biomechanical variables of interest. The impulse of the external joint 
moment provides insight into global loading experienced by passive (e. 
g., ligaments) and active (e.g., muscles) structures of the joint where 
both the magnitude and duration of the moment are taken into ac-
count,18 hence we selected the calculated impulses to test associations 
with KOOS subscales. Transverse plane data were not included as vari-
ables of interest due to their low reliability.35,36

Data analysis

Demographic data and biomechanical variables of interest were 
assessed for normality and linearity using Shapiro-Wilk analyses as well 
as visual inspection of boxplots and Q-Q plots and reported as appro-
priate. Comparisons of continuous variables (joint angles and moments) 
between groups (women with vs men with PF OA; women with vs 
women without PF OA) were completed using two-sample t-tests via 
statistical parametric mapping (SPM) (spm1D v0.4.8, http://www. 
spm1d.org) conducted in python v3.8 (Python™, Python Software 
Foundation) using previously defined methods.37-39 In brief, the test 
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statistic (SPMt) was calculated at each time node of the time series data 
and plotted.39 Alpha was set at 0.05 and the critical value of t was 
calculated based on the trajectory smoothness via temporal gradi-
ents.37,38 The differences between the two groups were considered 
meaningful when the SPMt surpassed the critical value (suprathreshold 
cluster). P-values for each suprathreshold cluster were then calculated 
via determining the probability that each cluster could have occurred 
from an equivalently smooth random process.37-39

Differences in the external joint moment impulse between groups 
were assessed using linear regression models via the "car" package with 
model regression assumptions verified using the “performance” package 
in R (R, R Foundation for Statistical Computing). For each impulse of 
interest, the independent variables of group and covariates of age and TF 
OA severity (KL score) were entered into the model with α set at 0.05. 
Adjusted mean differences and 95% confidence intervals (95% CI) were 
calculated, independent of significance level, using the "effects" package 
in R (R, R Foundation for Statistical Computing).

The relationships between the impulses of the external joint mo-
ments and KOOS subscales were also explored using linear models. For 
each impulse of interest, the independent variables of KOOS subscale, 
sex, age, and TF OA severity (KL score) were entered into the model 
along with a sex-by-KOOS interaction term. If the relationship between 
the impulse and KOOS subscale was modified by sex (interaction term P 
< 0.05), the data were stratified and separate linear models were con-
ducted. Where the relationship was not modified by sex (interaction 
term P > 0.05), the interaction term was dropped, and the relationship 
between the impulse and KOOS subscale was assessed within the model, 
controlling for sex, age, and TF OA severity (KL score).

Results

A total of 67 individuals with PF OA (43 women) and 14 women 
without PF OA were included in the study (Table 1). All three groups 
were of comparable age but were not homogenous regarding height and 

mass. Men with PF OA were taller (mean difference: 0.12 m; 95% CI: 
0.08, 0.15) and heavier (13.9 kg; 7.5, 20.2) than women with PF OA. 
Furthermore, women with PF OA were heavier than women without PF 
OA (8.9 kg; 2.0, 15.8). The KOOS-QOL was the lowest subscale for 
women with PF OA, whereas the KOOS-Sport/Rec was the lowest sub-
scale for men with PF OA (Table 1).

Walking biomechanics in women and men with PF OA

Women and men with PF OA walked with comparable sagittal plane 
hip joint kinematics (Fig. 1A); however, women with PF OA demon-
strated a smaller hip flexion moment (~13% to ~19% stance, P = 0.016; 
~26% to ~35% stance, P = 0.004; Fig. 2A) and impulse (adjusted mean 
difference −3.3 × 10–2 (95% CI −4.9 × 10–2, −1.6 × 10–2) Nms/kg, P <
0.01; Table 1) compared with men with PF OA. Women also demon-
strated a greater hip adduction angle during early to midstance (initial 
contact to ~59% stance, P < 0.001; Fig. 1A) and late stance (~88% to 
toe-off, P = 0.035; Fig. 1A), in conjunction with a greater hip adduction 
moment during early stance (~10 to ~17% stance, P = 0.007; Fig. 2A) 
compared with men with PF OA.

Women with PF OA walked with a smaller knee adduction moment 
during late stance (~67% to ~74% stance, P = 0.01; Fig. 2B) and 
demonstrated smaller impulses of the knee flexion and adduction mo-
ments (flexion: −2.9 × 10–2 (−5.3 × 10–2, −0.4 × 10–2) Nms/kg, P =
0.03; adduction: −3.0 × 10–2 (−5.3 × 10–2, −0.6 × 10–2) Nms/kg, P =
0.02; Table 1) compared with men with PF OA.

Women with PF OA walked with a greater ankle plantar flexion angle 
during late stance (~89% to ~97% stance, P = 0.038; Fig. 1C) and a 
smaller impulse of the ankle dorsiflexion moment (−5.1 × 10–2 (−8.2 ×
10–2, −2.0 × 10–2) Nms/kg, P < 0.01; Supplementary material online 1) 
compared with men with PF OA.

Walking biomechanics in women with and without PF OA

Select differences in walking biomechanics between women with 
and without PF OA were observed across the lower-limb kinetic chain. 
At the hip, women with PF OA walked with a greater hip flexion angle 
throughout most of stance (initial contact to ~10% stance, P = 0.045; 
~30% to 93% stance, P < 0.001; Fig. 3A), a smaller hip adduction angle 
during early stance (~3% to ~8% stance, P = 0.048; Fig. 3A), and a 
larger hip adduction angle during mid to late stance (~45% to ~94% 
stance, P < 0.001; Fig. 3A). At the knee, women with PF OA walked with 
a greater knee valgus angle (~11% to ~16% stance, P = 0.047; Fig. 3B) 
but a smaller knee adduction moment during early stance (~12% to 
~16% stance, P = 0.029; Fig. 4B) as well as a smaller impulse of the knee 
adduction moment (−4.1 × 10–2 (−6.9 × 10–2, −1.3 × 10–2) Nms/kg, P 
= 0.01; Supplementary material online 2). Finally, women with PF OA 
walked with a greater ankle inversion moment during late stance (~90% 
to ~98% stance, P = 0.017; Fig. 4C) compared with women without PF 
OA.

External joint moment impulse and KOOS associations in men and women 
with PF OA

A sex-specific interaction was observed for the relationship between 
the impulse of the hip flexion moment and the KOOS-QOL (F = 4.48, P =
0.04; Supplementary material online 3). In men with PF OA, a lower 
impulse of the hip flexion moment was associated with worse scores for 
the KOOS-QOL subscale, whereas this relationship was not observed for 
women with PF OA (Supplementary material online 4A).

A positive relationship was observed between the impulse of the 
knee flexion moment and KOOS-Sport/Rec, independent of sex (Sup-
plementary material online 3). Individuals with PF OA with worse scores 
for the KOOS-Sport/Rec subscale demonstrated a lower impulse of the 
knee flexion moment (Supplementary material online 4B).

Multiple relationships were observed between the impulse of the 

Table 1 
Demographic information and patient-reported outcome measures for men and 
women with patellofemoral joint osteoarthritis and women without patellofe-
moral joint osteoarthritis.

Patellofemoral Joint 
Osteoarthritis

Controls

Men (n = 24) Women (n = 43) Women (n = 14)
Age (years) 57 ± 12 55 ± 9 55 ± 7
Height (m) 1.76 ± 0.09 1.64 ± 0.06 1.63 ± 0.06
Mass (kg) 86 ± 14 72 ± 11 63 ± 11
BMI (kg/m2) 27.5 ± 3.7 26.5 ± 4.0 23.6 ± 3.7
Walking speed (m s-1) 1.37 ± 0.13 1.41 ± 0.14 1.35 ± 0.17
TF Joint OA K/L gradea   

0 9 (38%) 14 (33%) 10 (71%)
1 6 (25%) 12 (28%) 4 (29%)
2 9 (38%) 17 (40%) 0

PF Joint OA K/L gradea   
0 0 0 –

1 5 (21%) 8 (19%) –

2 16 (67%) 19 (44%) –

3 2 (8%) 7 (16%) –

4 1 (4%) 9 (21%) –

KOOS   
Pain 65 ± 14 64 ± 16 –

Symptoms 67 ± 18 62 ± 16 –

Activities of daily living 77 ± 14 71 ± 18 –

Sports/recreation 46 ± 23 44 ± 24 –

Quality of life 47 ± 12 41 ± 16 –

All data reported as means ± standard deviations unless indicated.
BMI, body mass index; K/L, Kellgren and Lawrence; KOOS, Knee Injury and 
Osteoarthritis Outcome Score; OA, osteoarthritis; PF, patellofemoral; TF, tibio-
femoral.
KOOS score range 0 – 100 (0 = worst symptoms and 100 = no symptoms).

a data reported as number (%).

M.G. King et al.                                                                                                                                                                                                                                 Brazilian Journal of Physical Therapy 28 (2024) 101132 

3 



Fig. 1. Comparison of sagittal and frontal plane kinematics between men and women with patellofemoral osteoarthritis at the A) hip, B) knee, and C) ankle during 
the stance phase of walking.
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Fig. 2. Comparison of sagittal and frontal plane external joint moments between men and women with patellofemoral osteoarthritis at the A) hip, B) knee, and C) 
ankle during the stance phase of walking.
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Fig. 3. Comparison of sagittal and frontal plane kinematics between women with and without patellofemoral osteoarthritis at the A) hip, B) knee, and C) ankle 
during the stance phase of walking.
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Fig. 4. Comparison of sagittal and frontal plane external joint moments between women with and without patellofemoral osteoarthritis at the A) hip, B) knee, and C) 
ankle during the stance phase of walking.
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knee adduction moment and the KOOS. A sex-specific interaction was 
observed for the relationship between the impulse of the knee adduction 
moment and the KOOS-ADL (F = 4.75, P = 0.03; Supplementary mate-
rial online 3). In men with PF OA, greater impulse of the knee adduction 
moment was associated with worse scores for the KOOS-ADL subscale, 
whereas this relationship was not observed for women with PF OA 
(Supplementary material online 4C). Furthermore, negative relation-
ships were observed between the impulse of the knee adduction moment 
and the KOOS-Sport/Rec and KOOS-QOL, independent of sex (Supple-
mentary material online 3). Individuals with PF OA with worse scores 
for the KOOS-Sport/Rec and KOOS-QOL subscales demonstrated a 
higher impulse of the knee adduction moment (Supplementary material 
online 4C).

Discussion

The present study tested whether women with PF OA displayed 
differences in their walking biomechanics with respect to: (a) men with 
PF OA; and (b) women without PF OA. Overall, we found mostly similar 
joint angle and moment profiles between groups, apart from some select 
differences. We also identified some relationships between walking 
biomechanics and the KOOS for our cohort of people with PF OA. 
Interestingly, our findings were not limited to knee joint variables, 
indicating that women with PF OA display some unique biomechanical 
features across the entire lower-limb kinetic-chain.

We observed differences in walking biomechanics between women 
and men with PF OA. For example, women with PF OA walked with a 
larger hip adduction angle throughout most of the stance phase 
compared to men with PF OA. This result is consistent with what has 
been found by previous studies in healthy people40-42 and in those with 
knee OA.41 Such findings suggest that some fundamental differences in 
how women and men walk remain evident irrespective of joint pathol-
ogy.17 We also found the impulses of the ’anti-gravity’ external joint 
moments (i.e., external flexion moments) to be lower for women 
compared to men with PF OA. A similar outcome has been recently re-
ported by Hart et al.,43 where women with PF OA walked with lower 
vertical ground forces and knee joint moments compared to men with PF 
OA. In contrast, other studies investigating sex-related differences in 
walking biomechanics for healthy people have in some instances, found 
women to display higher lower-limb joint moments than men.40,42,44 It 
therefore appears that sex-related differences in walking biomechanics 
are modified to some extent by the presence of joint pathology, and 
furthermore, some of our results might even be unique to people with PF 
OA.

We also observed some differences in walking biomechanics between 
women with PF OA when compared to sex- and age-matched controls. 
The most prominent differences were evident in kinematics at the hip 
rather than the knee. Women with PF OA were offset by ~5◦ towards 
greater hip flexion throughout stance which is similar to previous 
findings of a forward trunk lean while walking45 and greater anterior 
pelvic tilt during stair ambulation.46 While this may be a movement 
strategy to lower overall vasti force and reduce PF loads,21,45,46 in our 
group the external knee flexion moment was not lower compared to 
controls. In the frontal plane, women with PF OA displayed greater hip 
adduction through mid to late stance, consistent with our previous 
publication that included all participants (women and men),21 without 
exploring any sex interactions. While women with PF OA walked with 
increased hip flexion and adduction angles, we did not observe any 
differences between groups in the corresponding hip moments in the 
same plane. Thus, hip joint loading remained similar between groups 
despite the differences in hip joint movement patterns. It is possible that 
the hip kinematic adaptations may have translated to differences in knee 
and ankle joint moments, highlighting the importance of evaluating the 
entire lower-limb kinetic chain.

Women with PF OA were offset by ~2.5◦ towards knee valgus 
compared to women without PF OA. This offset likely resulted in the 

vertical GRF in the frontal plane being oriented closer to the knee joint 
centre, reducing the magnitude of its frontal plane lever arm about the 
knee joint centre, and thus the calculated external knee adduction im-
pulse. Although we cannot determine causality, these findings may 
reflect an adaptive strategy to reduce frontal plane knee joint loading in 
the presence of pain and/or pathology.

Some moderate to weak associations were revealed between certain 
lower-limb joint moment impulses during walking and KOOS subscales, 
but it is worth noting that outcomes differed across anatomical planes in 
terms of whether higher or lower joint loading was more favorable. The 
two associations involving sagittal plane biomechanics variables indi-
cated higher joint loading related to better subscales for the KOOS. In 
contrast, the three associations for the impulse of the knee adduction 
moment all indicated lower joint loading to be related to better subscales 
for the KOOS. Our findings here are generally consistent with some 
previous studies. In people with mild-to-moderate PF OA, Hart et al.43

found a higher impulse of the knee flexor moment during walking to be 
associated with a better (i.e., higher) KOOS. In people with medial TF 
OA, Hall et al.47 found associations between the knee adduction moment 
and symptoms to vary depending on disease severity. A lower impulse of 
the knee adduction moment was associated with less pain in those with 
moderate OA, whereas the opposite was true in those with severe OA. 
When interpreting these findings together, it seems that relationships 
between lower-limb joint mechanics and symptoms in people with knee 
OA are likely to be specific to both the dominant compartment involved 
and the disease severity.

There are limitations associated with the present study which require 
acknowledgement. First, the study’s exploratory nature utilising a sub-
set of participants from a previous randomized controlled trial26 means 
we did not perform an a priori sample size calculation. Consequently, 
the present study included groups with unbalanced numbers, which 
meant we may have been underpowered to detect additional differences 
or interaction effects resulting in type-II errors. Considering this and 
given the study’s exploratory nature, we did not perform a statistical 
correction for multiple comparisons. Second, we did not constrain 
walking speed or control for it in our statistical analysis. Individuals 
were deliberately allowed to walk at their self-selected speed to ensure 
they replicated their natural/usual walking pattern in the laboratory 
setting.48 Lower limb walking biomechanics variables are sensitive to 
change with alterations in walking speed.49 Nevertheless, using a nor-
malized/prescribed speed (or controlling for it within the statistical 
analysis) can potentially increase the likelihood for a type-II error.50,51

Third, we did not record the presence or severity of pain during the 
walking trials in the biomechanical assessment. Varying pain levels 
during walking may influence an individual’s walking performance and 
should be considered when interpreting the results. Fourth, the impre-
cise diagnostic nature of PF OA, particularly the absence of a specific or 
sensitive clinical test to differentiate PF and TF OA,21 must be consid-
ered when interpreting the results. We believe the inclusion based on 
clinical findings and radiography provides reasonable assurance a PF OA 
dominant cohort was recruited. Finally, this study focused on lateral PF 
OA of generally mild severity, given its higher prevalence in PF OA 
populations.1,29 This limits the study’s external validity, with results 
potentially not generalizable to everyone with PF OA.21

Conclusion

Some select differences in walking biomechanics were evident when 
comparing women with PF OA to men with PF OA and to women 
without PF OA. Also, associations between walking biomechanics and 
symptoms in people with PF OA have the potential to be sex-specific. 
While some limited evidence was revealed in support of our hypothe-
sis, further research is needed before definitive conclusions can be made. 
We suggest that evaluations combining male and female participants, 
without exploring the presence of sex as an effect modifier, may nullify 
associations between PF OA and walking biomechanics.
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