

Brazilian Journal of Physical Therapy

https://www.journals.elsevier.com/brazilian-journal-of-physical-therapy

SYSTEMATIC REVIEW

Determinants of cardiorespiratory fitness measured by cardiopulmonary exercise testing in COVID-19 survivors: a systematic review with meta-analysis and meta-regression

Mansueto Gomes-Neto^{a,b,*}, Katna de Oliveira Almeida^b, Helena França Correia^a, Juliana Costa Santos^a, Vinicius Afonso Gomes^{b,c}, Juliane Penalva Costa Serra^c, André Rodrigues Durães^b, Vitor Oliveira Carvalho^d

^a Physical Therapy Department, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil

^b Postgraduate Program in Medicine and Health, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil

^c Hospital Especializado Otávio Mangabeira, Salvador, BA, Brazil

^d Physical Therapy Department, Universidade Federal de Sergipe (UFS), Aracaju, SE, Brazil

Received 11 January 2023; received in revised form 28 March 2024; accepted 5 June 2024 Available online 17 June 2024

KEYWORDS Cardiopulmonary exercise test; Cardiorespiratory fitness; Long COVID; Post-COVID syndrome	Abstract Background: The relationship between cardiorespiratory fitness and its possible determinants in post-COVID-19 survivors has not been systematically assessed. Objectives: To identify and summarize studies comparing cardiorespiratory fitness measured by cardiopulmonary exercise testing in COVID-19 survivors versus non-COVID-19 controls, as well as to determine the influence of potential moderating factors. Methods: We conducted a systematic search of MEDLINE/PubMed, Cochrane Library, EMBASE, Google Scholar, and SciELO since their inceptions until June 2022. Mean differences (MD), stan- dard mean differences (SMD), and 95% confidence intervals (CI) were calculated. Subgroup and meta-regression analyses were used to evaluate potential moderating factors. Results: 48 studies (3372 participants, mean age 42 years, and with a mean testing time of 4 months post-COVID-19) were included, comprising a total of 1823 COVID-19 survivors and 1549 non-COVID-19 controls. After data pooling, VO ₂ peak (SMD=1.0 95% CI: 0.5, 1.5; 17 studies; N = 1273) was impaired in COVID-19 survivors. In 15 studies that reported VO ₂ peak

Systematic review registration: PROSPERO CRD42022325991

* Corresponding author: Departamento de Fisioterapia, Universidade Federal da Bahia- UFBA. Instituto de Ciências da Saúde. Av. Reitor Miguel Calmon s/n - Vale do Canela Salvador, BA CEP 40.110-100, Brazil.

E-mail: mansueto.neto@ufba.br (M. Gomes-Neto).

https://doi.org/10.1016/j.bjpt.2024.101089

1413-3555/© 2024 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Published by Elsevier España, S.L.U. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

with age, time post-COVID-19, disease severity, presence of dyspnea, and reduced exercise capacity.

Conclusion: This systematic review provides evidence that cardiorespiratory fitness may be impaired in COVID-19 survivors, especially for those with severe disease, presence of dyspnea, and reduced exercise capacity. Furthermore, the degree of reduction of VO_2 peak is inversely associated with age and time post-COVID.

© 2024 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Published by Elsevier España, S.L.U. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

Introduction

Cardiorespiratory fitness refers to the capacity of the circulatory and respiratory systems to supply oxygen to skeletal muscle mitochondria for energy production needed during physical activity.¹ Cardiorespiratory fitness has been considered a vital sign by the American Heart Association.² Low cardiorespiratory fitness is associated to health outcomes and mortality, even in healthy individuals.^{2,3} Cardiorespiratory fitness is also a clinical hallmark of chronic conditions, such as cardiovascular diseases.^{3,4}

The gold standard method to assess cardiorespiratory fitness is exercise testing to measure peak oxygen consumption $(VO_2 \text{ peak}).^{2,5}$ Therefore, the importance of assessing cardiorespiratory fitness by cardiopulmonary exercise test has gained even more attention in the Coronavirus Disease 2019 (COVID-19) pandemic.⁵

Recently, a systematic review that included 35 studies concluded that COVID-19 survivors had reduced levels of physical function, activities of daily living, and healthrelated quality of life.⁶ Furthermore, incomplete recovery of physical function, and performance in activities of daily living were observed 1 to 6 months post-infection. Thus, physical disability is a common condition in COVID-19 survivors.⁶ According to Arena & Faghy,⁵ the evidence that COVID-19 has upon cardiorespiratory fitness is not surprising given the potential impact of COVID-19 on the cardiac, pulmonary, and skeletal muscular systems.⁵ In addition, Rahmati et al. ⁷ published a recent meta-analvsis to analyze the long-term sequelae conditions of COVID-19. Their findings suggest that 2-year after recovery from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 41.7% of survivors still present with either neurological, physical, or psychological sequela.

It is well established that cardiopulmonary exercise test gives valid information regarding cardiorespiratory fitness impairment and insights about the mechanisms of this reduction.^{5,8} Analyzing the impact of COVID-19 on cardiorespiratory fitness and its determinants is particularly important to improve clinical-decision making in the context of rehabilitation.^{5,8}

The purpose of this systematic review and meta-analysis was to identify and summarize studies comparing cardiorespiratory fitness using cardiopulmonary exercise testing between COVID-19 survivors versus non-COVID-19 controls, as well as to summarize the determinants of cardiorespiratory fitness.

Methods

This systematic review was designed and performed in accordance with the recommendations from the Cochrane Handbook⁹ and completed in accordance with the PRISMA guidelines.¹⁰ This systematic review was registered with PROSPERO 2022: CRD42022325991. Available from: https://www.crd.york.ac.uk/prospero/display_record.php? ID=CRD42022325991

Eligibility criteria

This systematic review included studies that investigated cardiorespiratory fitness measured by cardiopulmonary exercise test in COVID-19 survivors. Studies were eligible for this systematic review if they met the following criteria: a) Population: adult COVID-19 survivors (\geq 18 years); b) outcome: studies that investigated cardiorespiratory fitness measured by cardiopulmonary exercise test; c) study design: observational (cross-sectional, case-control, or cohort) studies with or without age-matched non-COVID-19 controls. Studies that enrolled patients with other pre-existing cardiopulmonary, neurological, oncological, and/or musculo-skeletal diseases were excluded.

The primary outcome of this study was a cardiorespiratory fitness measure, VO_2 peak expressed in mL/min/kg or L/min. Secondary outcomes were oxygen consumption at anaerobic threshold (VO_2 AT) (mL/min/kg or L/min), first and/or second ventilatory threshold, and maximal workload in the cardiopulmonary exercise test.

Information sources and search strategy

We screened the MEDLINE/PubMed, Cochrane Library, EMBASE, Google Scholar, and Scientific Electronic Library Online (SciELO) from inception to June 2022, without language restrictions. For gray literature search, Opengrey and Proquest were used. A standard protocol for this search was developed and whenever possible, controlled vocabulary (Mesh term for PubMed and Cochrane) was used. Keywords and their synonyms were used for a more sensitive search.⁹

Search strategy

The strategy developed by Higgins and Green⁹ was used to identify the published studies in MEDLINE/PubMed. To identify the studies in the other databases, an adapted search strategy using similar terms was adopted. For the

preparation of the search strategy, three groups of keywords were used: study design, participants, and outcomes. The search strategy for MEDLINE via PubMed, EMBASE, Cochrane library, and Scielo are presented in Supplementary material - Table S1. We checked the reference lists used in articles included in this systematic review to identify other potentially eligible studies.

Data collection and analysis

Each identified title and abstract were independently evaluated by two reviewers. If at least one of the reviewers considered one reference eligible, the full text was obtained for complete assessment. Two reviewers independently assessed the full texts to verify if they met the eligibility criteria. In case of any disagreement, authors discussed the reasons for their decisions and a consensual decision was made.

Two reviewers independently extracted data from the published reports using standard data extraction forms adapted from the Cochrane Handbook.⁹ The following variables were summarized in a pre-formatted spreadsheet: authors, year of publication, inclusion/exclusion criteria, characteristics of study participants (n, age, sex, body mass index, comorbidities, disease severity, hospitalization, time post-COVID-19).

The software EndNote X7.8 (Clarivate, Philadelphia, PA) was used for analysis of eligibility criteria and duplicate analysis. Thus, all studies selected from the databases were exported in an appropriate file and analyzed in the software EndNote X7.8. Then, the exported files were also added to the Rayyan Software for evaluation, selection, and data extraction independently by two reviewers. Aspects of the study population, measures performed, follow-up period and rates of missing data, outcome measures, and results were reviewed.

Risk of bias assessment

Two independent reviewers assessed the methodological quality and risk of bias for all studies, using the Newcastle Ottawa Quality Assessment Scale (NOS)¹¹ for observational cohort and case-control studies, and the Newcastle Ottawa Quality Assessment Scale adapted for cross-sectional studies. With the original version, all studies were judged based on 8 items grouped into 3 major domains (participant selection, group comparability, and ascertainment of exposure); scores range from 0 to 9, with scores \geq 7 indicating high quality. The modified and adapted NOS evaluates 7 methodological items and their reporting (scores 0–10), with scores \geq 7 consistent with high-quality studies.¹¹

Data analysis

For continuous data (VO₂ peak, VO₂AT), the mean difference between-groups (COVID-19 group vs non-COVID-19 controls or data before the pandemic) was calculated with pertinent 95% confidence intervals (CIs). An α value <0.05 was considered statistically significant. Statistical heterogeneity of the treatment effect among studies was assessed using Cochran's Q test and the I² inconsistency test statistic, in which values 0–40%: might not be important; 30–60%: may

represent moderate heterogeneity; 50-90%: may represent substantial heterogeneity; 75-100%: considerable heterogeneity.⁹ To investigate the influence of participant characteristics and clinical outcomes on pooled meta-analysis, subgroup analyses (categorical covariates) and randomeffects meta-regression (continuous covariates) were performed. Where applicable, subgroup analyses were performed to determine the associations among VO_2 peak and categorical variables such as sex, previous physical activity (athletes vs non-athletes), dyspnea, and disease severity. Meta-regression analyses were performed to determine the associations among the VO₂ peak and potential modulating factors (sample size, age, % females, body mass index, and post-COVID-19 time). In all meta-regression models, studies were weighted by the inverse variance of the dependent variable. Potential modulating factors were entered as independent variables in regressions models with VO₂ peak as the dependent variable. To explore the robustness of our findings we performed a sensitivity analysis. We repeated the main analysis by including only high-quality studies (NOS score \geq 7). We also repeated the analysis separating the studies by their design (cohort and cross-sectional). To reexpress the SMD, we selected a study included in the original meta-analysis that we considered representative of the population with low risk of bias and multiplied its standard deviation by the pooled SMD. The analyses were conducted using Review Manager Version 5.4 (Cochrane Collaboration)¹² and R 4.1.3.¹³

Funnel plots of effect size (Hedge's g) against the standard error, Begg rank correlation test, or Egger's regression test were used to assess publication bias if more than 10 studies were included in the meta-analysis.⁹

Results

Description of selected studies

The initial search identified 7167 records. A total of 1183 records were excluded after reading the titles and abstracts, for not meeting the eligibility criteria. After a complete reading of 65 full-text records, 17 records were excluded (reasons presented in the flowchart and Supplementary material - Table S2). Finally, 48 studies^{14–61} met the eligibility criteria. Manual search did not find additional relevant studies. Supplementary material – Fig. S1 shows the flow diagram of studies in this review according to PRISMA guide-lines.

Of the 48 studies included in this systematic review, 32 were cohort, and 16 cross-sectional studies. For each study, design, sample size, sex, outcomes measures, methodological quality, and key findings were extracted (Table 1).

COVID-19-related outcomes on cardiorespiratory fitness measured by cardiopulmonary exercise test in included studies are described in Table 2. The % of predicted VO₂ peak for both groups are presented in Supplementary material - Table S3. The mean quality of the studies was moderate-to-high, with an average score of 6.4 \pm 1.2 (Supplementary material – Table S4).

When pooling all studies together that compared COVID-19 survivors to non-COVID-19 controls (independent of the unit of measure of VO_2 peak), we observed a significantly

Table 1 Characteristics of the participants of the studies included in the systematic review.

Author/year	Study design	N analyzed; mean age; sex%	Time post- covid	Hospital admission	ICU admission	COVID Group	Control Group	NOS
Ambrosino et al. 2022 ¹⁴	Cross-sectional	36; 54.5; 91.7% male	≥2 months	Yes	Yes	COVID-19 with normal exercise capacity COVID-19 with reduced exer-	NA	7
Baptista et al. 2022 ¹⁵	Cohort	105; 59.2; 79% male	\geq 3 months	Yes	Yes	cise capacity COVID-19 with normal exercise capacity COVID-19 with reduced exer-	NA	6
Brown et al. 2022 ¹⁶	Case-control	60; 51.6; 56.6% male	\geq 3 months	Yes	Yes	cise capacity COVID-19 with normal exercise capacity COVID-19 with reduced exer-	non-COVID- 19	6
Costello et al. 2021 ¹⁷	Cross-sectional	24; 26; 75% male	<1 month	Not	Not	cise capacity COVID-19 athletes	non-COVID- 19 athletes	5
Evers et al. 2022 ¹⁸	Cohort	30; 51.5; 60% male	\geq 4 months	Yes	Yes	COVID-19 with non-limited CPET COVID-19 with limited CPET	NA	5
Gruenewaldt et al. 2022 ¹⁹	Cross-sectional	20; 49.8; 54% male	\geq 3 months	Yes	Not	Obese normal BrP Abnormal BrP	NA	5
Lacavalerie et al. 2022 ²⁰	Cohort	51; 61; 61% male	6 months	Yes	Yes	COVID-19 obese	non-COVID- 19 obese	6
Ladlow et al. 2022 ²¹	Cohort	205; 38; 84% male	6 months	Yes	Not	Post-COVID-19 without dysauto- nomia Post-COVID-19 with dysautonomia	NA	7
Ladlow et al. 2022 ²²	Cohort	113; 39.6; 87% male	>5 months	Yes	Yes	H-S H-R C-S C-R	non-COVID- 19	6
Milani et al. 2022 ²³	Cohort	288; 43.0; 57% male	<3 month	Yes	Yes	COVID-19 severe COVID-19 moderate COVID-19 Mild	non-COVID- 19	7
Mitrani et al. 2022 ²⁴	Cohort	174; 24; 70.1% male	<1 month	Not	Not	Post-COVID-19 athletes No-MI Post-COVID-19 athletes MI	NA	7
Moulson et al. 2022 ²⁵	Cohort	63; 21.9; 43% female	<1 month	Not	Not	Post-COVID-19 athletes	Athletes without COVID-19	6
Di Paco et al. 2022 ²⁶	Cross-sectional	16; 22.9; 100% male	NR	Not	Not	COVID-19 athletes	NA	4
Romero-Ortuno et al. 2022 ²⁷	Cross-sectional	80; 46; 71% female	\geq 7 months	Yes	Yes	Did not reach 85% maximum HR Reached 85% maximum HR	NA	6
Schaeffer et al. 2022 ²⁸	Cohort	49; 46.7; 55% male	3 months	Yes	Yes	Post-COVID-19 fatigue Non-fatigue	NA	7
Singh et al. 2022 ²⁹	Cohort	20; 48; 85% female	≥8 months	Yes	Yes	Post-COVID-19	Symptomatic patients without a prior history of COVID-19	7
Wood et al. 2022 ³⁰	Cohort	22; NR; 86% female	\geq 8 months	Yes	Yes	Post-COVID-19	NA	6
Alba et al. 2021 ³¹	Cohort	36; 47.0; 66.7% female	>4 months	Yes	Not	PASC	Without post- COVID-19 syndrome	6
Anastasio et al. 2021 ³²	Cross-sectional	26; 21; 69% male	>1 months	Not	Not	Covid athletes	Athletes detrained	6
Aparisi et al. 2021 ³³	Cohort	70; 54.8 73.2% female	3 months	Yes	Yes	Post-COVID-19 with persistent dyspnea Post-COVID-19 without residual dyspnea	NA	9
Baratto et al. 2021 ³⁴	Cross—sectional	36; 65.5; 72% male	NR	Yes	Not	Post-COVID-19	Patients who underwent a full CPET for unexplained dyspnea	7
Barbagelata et al. 2021 ³⁵	Cross-sectional	200; 48.8; 51% male	>8 months	Yes	Not	Post-COVID-19 syndrome	Without post- COVID-19 syndrome	7
Cassar et al. 2021 ³⁶	Cohort	88; 55; 59% male	3 months	Yes	Yes	COVID-19	COVID-19 negative controls	9
Cavigli et al. 2021 ³⁷ Clavario et al.	Cross-sectional Cohort	90; 24; 71.1% male 200; 58.8; 86%	NR 3 months	Not	Not	Athletes post-COVID-19 VO ₂ below 85%	NA	7 8
2021 ³⁸	Conort	200; 58.8; 86% female	3 months	Yes	Yes	VO ₂ below 85% VO ₂ above 85%	NA .	0

Author/year	Study design	N analyzed; mean age; sex%	Time post- covid	Hospital admission	ICU admission	COVID Group	Control Group	NOS
Csulak et al. 2021 ³⁹	Cohort	46; 23.6; 46.9% female	NR	Not	Not	COVID-19 swimmers	non-COVID- 19 swimmers	8
Debeaumont et al. 2021 ⁴⁰	Cross-sectional	23; 59; 48% female	6 months	Yes	Yes	General ward survivors ICU survivors	NA	6
Dorelli et al. 2021 ⁴¹	Cohort	28; 56.5; 79% male	\geq 3 months	Yes	Yes	Subjects with EVef Subjects with EVin	NA	5
Fikenzer et al. 2021 ⁴²	Cohort	12; 24.5; 100% male	<1 month	Not	Not	COVID-19	non-COVID- 19	6
Gao et al. 2021 ⁴³	Cross-sectional	10; 50.7; 70% male	1 month	Yes	Not	Post-COVID-19	NA	3
Jahn et al. 2021 ⁴⁴	Cross-sectional	35; 58; 17.1% female	3 months	Yes	Yes	Impaired VO ₂ max Normal VO ₂ max	NA	6
Komici et al. 2021 ⁴⁵	Cohort	24; 22.2; 100% male	NR	Not	Not	Post-COVID-19 athletes	Healthy control	8
Liu et al. 2021 ⁴⁶	Cohort	41; 50; 54% male	6 months	Yes	Yes	Fibrosis group Non-fibrosis group	NA	7
Mancini et al. 2021 ⁴⁷	Cohort	41; 45.2; 23% female	3 months	Yes	Not	Post- COVID-19	NA	7
Mazzucco et al. 2021 ⁴⁸	Cross-sectional	80; 47.1; 40% female	>8 months	Not	Not	Pre-COVID-19 ergometry Post-COVID-19 ergometry	NA	6
Milovancev et al. 2021 ⁴⁹	Cross-sectional	16; 24; 100% male	NR	Not	Not	Post- COVID-19 athletes	NA	5
Mohr et al. 2021 ⁵⁰	Cohort	10; 50; 60% male	\geq 3 months	Yes	Yes	Post-COVID-19	NA	4
Motiejunaite et al. 2021 ⁵¹	Cohort	114; 57; 67% male	3 months	Yes	Yes	DLCO >75% DLCO ≼75%	NA	6
Oliynyk et al. 2021 ⁵²	Cohort	78; 68.4; 42% female	NA	Yes	Yes	COVID-19 survivors	Healthy subjects	7
Pleguezuelos et al. 2021 ⁵³	Cross-sectional	60; 52.2; 100% male	2 months	Yes	Yes	Post-COVID-19	COPDG IHDG Healthy individuals	6
Raman et al. 2021 ⁵⁴	Cohort	88; 55; 59% male	≥ 2 months	Yes	Yes	Post-COVID-19	Without post- COVID-19	7
Rinaldo et al. 2021 ⁵⁵	Cohort	75; 86; 57% male	3 months	Yes	Yes	COVID-19 with normal exercise capacity COVID-19 with reduced exercise capacity	NA	6
Skjorten et al. 2021 ⁵⁶	Cohort	156; 56.2; 60% female	3 months	Yes	Yes	Post-COVID-19	NA	7
Szekely et al. 2021 ⁵⁷	Cohort	71; 52.6; 66% male	≥ 6 months	Yes	Yes	Post-COVID-19	Without post- COVID-19	8
Xiao et al. 2021 ⁵⁸	Cohort	56; 48; 58% male	6 months	Yes	Yes	Post-COVID-19 non-severe Post-COVID-19 severe	NA	8
Vannini et al. 2021 ⁵⁹	Cohort	41; 57.3; 39% female	6 months	Yes	Yes	Mild pneumonia Severe pneumonia ARDS	NA	8
Varughese et al. 2021 ⁶⁰	Cohort	14; 54; 100% female	5 months	Yes	Yes	Post-COVID-19	Healthy control	5
Vonbank et al. 2021 ⁶¹	Cohort	150; 46.8; 47.3% female	\geq 3 months	Yes	Yes	Post-COVID-19	Healthy individuals	8

ARDS, Acute Respiratory Distress Syndrome; BrP, abnormal/normal breathing pattern; C-R, community-recovered; C-S, community-symptomatic; CON, control; COPD, chronic obstructive pulmonary disease group; COVIDG, COVID-19 group; COVID+ athletes, athletes who tested positive to COVID-19; COVID- athletes, athletes who tested negative to COVID-19; CPET, cardiopulmonary exercise testing; DLCO, diffusing capacity of the lung for carbon monoxide; EVef, exercise ventilatory efficiency; Evin, inefficiency exercise ventilatory; HDG, heart disease group; I+R; hospitalized-recovered; I+S, hospitalized-symptomatic; NA, not analyzed; NOS, Newcastle-Ottawa scale; NR, not reported; PASC, patients post-acute sequelae of SARS-COV-2 infection; PostCG, Post Covid Group; T0, before the sport season; T1,: immediately after return to COCID negative.

higher VO₂ peak in the non-COVID-19 control group compared to COVID-19 survivors (SMD=1.1, 95% CI: 0.6, 1.6; 18 studies; N = 1491), with considerable heterogeneity across studies (I² = 94%, P < 0.001), (Fig. 1). Re-expressing the SMD to VO₂ peak values in mL/min/kg showed an MD of 7.7 mL/ min/kg, 95% CI: 4.3, 11.4.

In the 15 studies with 16 arms (1123 participants) that reported VO₂ peak values in mL/min/kg, non-COVID-19 controls showed higher VO₂ peak values than COVID-19 survivors (MD=5.9 mL/min/kg, 95% CI: 3.8, 8.0; N = 905; $I^2 = 85\%$, P < 0.001) (Fig. 2). In a subgroup analysis, considering the previous physical activity status (athletes vs non-athletes), the meta-analysis showed a significantly higher VO₂ peak for non-athletes non-COVID-19 survivors compared with nonathletes COVID-19 survivors (MD=7.6 mL/min/kg, 95% CI: 5.3, 10.1; 10 studies; N = 929; $I^2 = 83\%$, P < 0.001). When we performed a subgroup analysis with studies of athletes non-COVID-19 survivors compared with athletes COVID-19 survivors the meta-analyses showed a non-significant difference in VO₂ peak (MD=2.4 mL/min/kg, 95% Cl: -2.2, 7.0; 5 studies; N = 194; $I^2 = 84\%$, P = 0.31) (Fig. 2).

In another subgroup analysis, considering the disease severity (severe vs non-severe COVID-19), the meta-analyses showed a significantly higher VO₂ peak for non-severe COVID-19 group compared with severe COVID-19 group (MD=4.97 mL/min/kg, 95% CI: 1.8, 8.1; 6 studies; N = 368; I² = 86%, P < 0.002) (Fig. 3a). When we performed a subgroup analysis with studies considering the presence of dyspnea in COVID-19 survivors (dyspnea vs non-dyspnea), the meta-analysis showed a significantly higher VO₂ peak for

		COVID C	ROUP	CONTROL GROUP		
Author/year		VO _{2peak} mean (SD)	VO _{2AT} mean (SD)	VO _{2peak} mean (SD)	VO _{2AT} mean (SD)	
Ambrosino et al. 2022 ¹⁴	NEC (VO ₂ peak < 20)	21.7 (1.9)	14.9 (2.6)	NA	NA	
	REC (VO ₂ peak \geq 20)	15.1 (3.0)	11.6 (3.0)			
Baptista et al. 2022 ¹⁵	NEC (VO ₂ peak \geq 80% of	20.1 (5.1)	NA	NA	NA	
	predicted)					
	REC (VO ₂ peak $< 80\%$ of	14.8 (3.7)				
	predicted)					
Brown et al. 2022 ¹⁶	COVID reduced	14.7 (2.3)	NA	22.4 (8.1)	NA	
	COVID normal	19.4 (6.3)				
Costello et al. 2022 ¹⁷	COVID+ athletes	41.5 (5.0)	NA	47.2 (10.6)	NA	
Evers et al. 2022 ¹⁸	Nonlimited CPET	26.0 (7.0)	NA	NA	NA	
	Limited CPET	21.0 (5.0)				
Gruenewaldt et al.	Normal BrP	28.8 (6.6)	28.8 (6.7)	NA	NA	
2022 ¹⁹	Abnormal BrP	19.7 (6.3)	19.7 (6.3)			
Lacavalerie et al.	Obese COVID-19	15.7 (5.0)	NA	15.3 (2.7)	NA	
2022 ²⁰	patients			· · /		
Ladlow et al. 2022 ²¹	Post-COVID without	35.8 (7.6)	14.1 (3.2)	NA	NA	
	dysautonomia		· · ·			
	Post-COVID with	30.6 (5.5)	12.6 (2.1)			
	dysautonomia		· · ·			
Ladlow et al. 2022 ²²	H-S	29.9 (5.0)	12.1 (1.7)	43.9 (13.1)	18.2 (5.6)	
	H-R	32.6 (6.6)	12.9 (2.5)			
	C-S	34.4 (7.2)	14.5 (3.9)			
	C-R	44.3 (7.4)	17.2 (3.0)			
Milani et al. 2022 ²³	COVID-19 severe	23.7 (5.9)	NA	30.7 (8.9)	NA	
	COVID-19 moderate	29.0 (8.9)		· · ·		
	COVID-19 mild	34.2 (8.9)				
Mitrani et al. 2022 ²⁴	Post-COVID-19	37.6 (7.9)	NA	NA	NA	
	athletes no-MI					
	Post-COVID-19	42.0 (11.3)				
	athletes MI					
Moulson et al. 2022 ²⁵	Post-COVID-19	44.6 (9.1)	35.7 (11.3)	46.4 (9.6)	36.0 (10.3)	
	athletes					
Di Paco et al. 2022 ²⁶	COVID-19 athletes T0	55.3 (5.8)	49.3 (5.0)	NA	NA	
	COVID-19 athletes T1	53.5 (5.8)	50.2 (5.8)			
Romero-Ortuno et al.	Did not reach	29.4 (7.1)	NA	NA	NA	
2022 ²⁷	85% maximum HR					
	Reached	29.8 (8.4)				
	85% maximum HR					
Schaeffer et al. 2022 ²⁸	Fatigue	19.9 (7.1)	NA	NA	NA	
	Non-fatigue	24.4 (6.7)				
Singh et al. 2022 ²⁹	Post-COVID-19	16.7 (4.2)	NA	33.5 (12.9)	NA	
Wood et al. 2022 ³⁰	Post COVID-19 cardiac	28.9 (7.4)	NA	NA	NA	
	symptoms					
Alba et al. 2021 ³¹	PASC	21.0 (8.8)	12.5 (3.2)	19.6 (6.0)	12.9 (4.0)	
Anastasio et al. 2021 ³²	COVID-19 athletes	56.5 (12.3)	29.4 (7.2)	60.0 (10.0)	38.8 (8.5)	
Aparisi et al. 2021 ³³	No residual dyspnea	23.1 (6.7)	17.6 (3.2)	NA	NA	
	Persistent dyspnea	18.2 (4.0)	13.2 (5.9)			
Baratto et al. 2021 ³⁴	Post-COVID-19	14.8 (6.1)	NA	22.8 (9.3)	NA	
Barbagelata et al.	With post-COVID-19	25.8 (8.1)	NA	28.8 (9.6)	NA	
2021 ³⁵	syndrome					
Cassar et al. 2021 ³⁶	COVID-19, 2–3 months	18.1 (5.6)	9.5 (1.8)	28.6 (8.9)	11.6 (3.4)	
	COVID-19, 6 months	20.3 (8.7)	10.5 (2.4)			
Cavigli et al. 2021 ³⁷	Athletes post-COVID-19	39.0 (6.6)	NA	NA	NA	
Clavario et al. 2021 ³⁸	VO ₂ below 85%	17.4 (4.1)	907.7 (24.5)	NA	NA	
	VO ₂ above 85%	23.4 (6.5)	118.9 (35.2)			
Csulak et al. 2021 ³⁹	COVID-19 swimmers	55.7 (4.3)	NA	56.7 (4.6)	NA	
Debeaumont et al.	General ward survivors	19.8 (6.8)	NA	NA	NA	
2021 ⁴⁰	ICU survivors	17.2 (6.8)				
Dorelli et al. 2021 ⁴¹	Subjects with EVef	27.6 (5.2)	18.0 (3.2)	NA	NA	
	Subjects with EVin	32.9 (13.1)	21.1 (12.6)			
Fikenzer et al. 2021 ⁴²	COVID-19	4082 (520)	NA	3911 (46)	NA	
Gao et al. 2021 ⁴³	Post-COVID-19	NA	47.6 (6.3)	NA	NA	

Table 2	Outcomes VO _{2peak} ,	VO _{2AT} , FVC, FEV	for studies included in the systematic review.
---------	--------------------------------	------------------------------	--

		COVID	GROUP	CONTROL	GROUP
Author/year		VO _{2peak} mean (SD)	VO _{2AT} mean (SD)	VO _{2peak} mean (SD)	VO _{2AT} mean (SD)
Jahn et al. 2021 ⁴⁴	Normal VO ₂ max (\geq 80% of predicted)	NA	14.0 (1.0)	NA	NA
	Impaired VO ₂ max (< 80% of predicted)		14.0 (1.0)		
Komici et al. 2021 ⁴⁵	COVID-19 athletes	49.7 (3.0)	NA	48.5 (6.4)	NA
Liu et al. 2021 ⁴⁶	Fibrosis group	16.4 (3.6)	14.6 (3.7)	NA	NA
	Non-fibrosis group	20.2 (3.7)	16.0 (3.5)		
Mancini et al. 2021 ⁴⁷	Post-COVID-19	20.3 (7.0)	11.7 (3.2)	NA	NA
Mazzucco et al. 2021 ⁴⁸	Pre-COVID19 ergometry	23.9 (11.9)	NA	NA	NA
	Post-COVID-19 ergometry	21.6 (7.0)			
Milovancev et al. 2021 ⁴⁹	Post-COVID-19 athletes	44.1 (3.4)	NA	NA	NA
Mohr et al. 2021 ⁵⁰	Post-COVID-19	1512 (232)	NR	NA	NA
Motiejunaite et al.	DLCO >75%	19.4 (5.5)	28.7 (13.5)	NA	NA
2021 ⁵¹	DLCO ≼75%	16.3 (3.8)	28.0 (7.5)		
Oliynyk et al. 2021 ⁵²	COVID-19 survivors	112.1 (4.9)	NA	281.1 (11.2)	NA
Pleguezuelos et al.	Post-COVID-19	17.3 (9.8)	8.9 (4.1)	14.3 (5.4)	9.25 (4.1)
2021 ⁵³				18.8 (12.5)	10.5 (6.1)
				32.3 (15.7)	14.4 (8.1)
Raman et al. 2021 ⁵⁴	Post-COVID-19	NA	41.5 (8.5)	NA	47.1 (6.0)
Rinaldo et al. 2021 ⁵⁵	NEC (≥85% predicted)	22.1 (5.5)	62.0 (13.0)	NA	NA
	REC (<85% predicted)	18.3 (4.9)	48.0 (9.0)		
Skjorten et al. 2021 ⁵⁶	Post-COVID-19	28.7 (8.4)	52.0 (12.0)	NA	NA
Szekely et al. 2021 ⁵⁷	Post-COVID-19	1.6 (0.5)	12.3 (3.6)	2.24 (0.9)	15.4 (5.7)
Xiao et al. 2021 ⁵⁸	Post-COVID-19 non-severe	20.0 (45.8)	14.0 (63.6)	NA	NA
	Post-COVID-19 severe	15.0 (45.4)	14.0 (87.0)		
Vannini et al. 2021 ⁵⁹	Mild pneumonia	NA	NA	NA	NA
	Severe pneumonia ARDS				
Varughese et al. 2021 ⁶⁰	Post-COVID-19	19.6 (7.4)	NR	29.1 (8.3)	NR
Vonbank et al. 2021 ⁶¹	Post-COVID-19 mild	28.2 (9.0)	NA	29.6 (7.5)	NA
	Post-COVID-19 severe	21.3 (6.4)			

Table 2(Continued)

ARDS, Acute Respiratory Distress Syndrome; BrP, breathing pattern; DLCO, diffusing capacity of the lung for carbon monoxide; C-R, community-recovered; C-S, community-symptomatic; CON, control; COPD, chronic obstructive pulmonary disease group; CPET, cardiopulmonary exercise testing; COVID+ athletes, athletes who tested positive to COVID-19; COVID- athletes, athletes who tested negative to COVID-19; COVIDG, COVID-19 group; H-R, hospitalized-recovered; H-S, hospitalized-symptomatic; HDG: heart disease group; HG: healthy group; MI: Myocardial involvement; NA: not analyzed; NR: not registered; NEC, Normal exercise capacity; No-Mi, No myocardial involvement;; REC, reduced exercise capacity; SD, standard deviation; TO, before the sport season; T1. immediately after return to COVID negative; VO₂ AT, oxygen consumption at anaerobic threshold; VO₂ peak: peak oxygen consumption in mL/min/kg or mL/min.

participants in the non-dyspnea COVID-19 group compared with dyspnea COVID-19 group (MD=6.0 mL/min/kg, 95% CI: 4.1, 7.8; 3 studies; N = 245; $I^2 = 35\%$, P < 0.001) (Fig. 3b). In another subgroup analysis, considering the exercise capacity in COVID-19 survivors (normal vs reduced exercise capacity) the meta-analysis showed a significantly higher VO₂ peak for participants in the normal exercise capacity COVID-19 group compared with reduced exercise capacity COVID-19 group (MD=5.8 mL/min/kg, 95% CI: 4.9, 6.6; 6 studies; N = 526; $I^2 = 0\%$; P < 0.001) (Fig. 3c).

Across 8 studies evaluating VO_2 AT that compared COVID-19 survivors to non-COVID-19 controls we found a significantly higher VO_2 AT in non-COVID-19 controls than in COVID-19 survivors (MD=2.5 mL/min/kg, 95% CI: 1.3, 3.7), with moderate heterogeneity ($I^2 = 49\%$, N = 88, p < 0.001) (Fig. 3). In a subgroup analysis, considering the previous physical activity status (athletes vs non-athletes), the metaanalysis showed a significantly higher VO₂ AT for non-athletes non-COVID-19 controls compared with non-athletes COVID-19 survivors (MD = 2.2 mL/min/kg, 95% CI: 1.3, 3.1; 6 studies; N = 399; $I^2 = 24\%$, P < 0.001). When we performed a subgroup analysis with studies of athletes non-COVID-19 controls compared with athletes COVID-19 survivors the metaanalyses showed a non-significant difference in VO₂ AT (MD = 4.9 mL/min/kg, 95% CI: -4.9, 14.7; 2 studies; N = 89; $I^2 = 83\%$, P = 0.32). In addition, considering the disease

M. Gomes-Neto, K.O. Almeida, H.F. Correia et al.

	Co	ontrol	1	CO	/ID-1	9		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
Alba et al 2021	19	7.4	18	20	7	18	5.8%	-0.14 [-0.79, 0.52]	-
Anastasio et al 2021	39	6	13	29	5	13	5.2%	1.75 [0.83, 2.68]	
Baratto et al 2021	23	9	18	15	6	18	5.7%	1.02 [0.32, 1.72]	
Barbagelata et al 2021	29	9.6	88	26	8	112	6.4%	0.34 [0.06, 0.62]	-
Brown et al 2022	22	9	20	17	5	40	6.0%	0.75 [0.20, 1.30]	-
Cassar et al 2021 2-3	27	12	30	18	6	58	6.2%	1.05 [0.58, 1.52]	+
Cassar et al 2021 6	27	12	30	21	7	46	6.2%	0.64 [0.17, 1.11]	+
Costello et al 2022	42	5	8	47	11	16	5.4%	-0.51 [-1.37, 0.36]	-+-
Csulak et al 2021	53	3.6	32	55	4.5	14	5.9%	-0.51 [-1.14, 0.13]	
Komici et al 2021	49	6	11	50	3	24	5.7%	-0.24 [-0.95, 0.48]	
Mazzucco et al 2021	23	11	80	21	7	80	6.4%	0.22 [-0.09, 0.53]	+
Oliynyk et al 2021	282	12	28	112	5	50	1.5%	20.52 [17.18, 23.86]	''
Pleguezuelos et al 2021	32	7	15	17	5	15	5.1%	2.40 [1.43, 3.37]	
Raman et al 2021	28	6	30	19	7	58	6.2%	1.34 [0.85, 1.82]	-
Singh et al 2021	34	13	10	17	4	10	4.9%	1.69 [0.64, 2.75]	
Szekely et al 2021	2.2	0.9	35	1.6	0.5	71	6.3%	0.91 [0.48, 1.33]	+
Varughese et al 2021	29	8	7	20	7	7	4.7%	1.12 [-0.04, 2.28]	
Vonbank et al 2021	30	8	50	25	7	100	6.4%	0.68 [0.33, 1.03]	+
Total (95% CI)			523			750	100.0%	1.00 [0.54, 1.47]	◆
Heterogeneity: Tau ² = 0.85	; Chi ² = 1	214.3	86. df =	17 (P <	0.000	001); P	= 92%		
Test for overall effect: Z = 4						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-10 -5 0 5 10 Favours [COVID-19I] Favours [Control]

Fig. 1 VO2 peak-COVID-19 survivors vs Control.

severity (severe vs non-severe COVID-19), the meta-analysis showed a significantly higher VO₂ AT for non-severe COVID-19 group compared with severe COVID-19 group (MD = 2.2 mL/min/kg, 95% CI: 0.8, 3.6; 3 studies; N = 210; $I^2 = 28\%$, P < 0.002).

Across 7 studies evaluating % of predicted VO₂ peak, we found significantly higher % of predicted VO₂ peak in non-COVID-19 controls than COVID-19 survivors (MD = 19%, 95% CI: 6.4, 31.4; N = 380), with considerable heterogeneity $(I^2 = 86\%, p < 0.001)$. In a subgroup analysis, considering the previous physical activity status (athletes vs non-athletes), the meta-analysis showed a significantly higher % of predicted VO₂ peak for non-athletes non-COVID-19 controls compared with non-athletes COVID-19 survivors (MD = 21.7 mL/min/kg, 95% CI: 7.3, 36.1; 6 studies; N = 399; I^2 = 88%, P < 0.003). When we performed a subgroup analysis with studies of athletes non-COVID-19 controls compared with athletes COVID-19 survivors the analysis showed a nonsignificant difference in % of predicted VO₂ peak (MD = 4.0 mL/min/kg, 95% CI: -10.6, 18.6; 1 studies; N = 89,P = 0.56).

Meta-regression analyses

Two factors (age and time post-COVID-19) were found to be significant (P < 0.05) and two factors (body mass index and % female) were found to be non-significant (P > 0.05) predictors in univariable analysis. Age and post-COVID-19 time were significantly associated with VO₂ peak reduction in COVID-19 survivors compared to non-COVID-19 controls. Higher age was associated with a larger magnitude of COVID-19 survivors–control mean difference, that is, a mean reduction in VO₂ peak of -0.20 mL/min/kg (95% CI: -0.34, -0.01; $I^2 = 80.2\%$) for each one-year increase in mean age across studies. Higher mean post-COVID-19 time across studies was associated with a larger magnitude of COVID-19 survivors versus non-COVID-19 controls mean

difference, that is, a mean reduction in VO₂ peak of -1.1 mL/min/kg (95% CI: -2.2, -1.0; I² = 81.3%) for each one month increase in mean time post-COVID-19 across studies (Supplementary material – Figure S2).

Assessment of small study bias

For studies reporting VO_2 peak there was no evidence of funnel plot asymmetry (Supplementary material - Fig. S3) and the Egger test was non-significant (P = 0.10).

Sensitivity analysis

To explore the robustness of our findings, we repeated the main analysis by including only high-quality studies (NOS score \geq 7). In 11 high-quality studies (1125 participants), we observed a significantly higher VO₂ peak in the non-COVID-19 control group compared to COVID-19 survivors (SMD= 1.4, 95% CI 0.7, 2.2; I² = 96%, *P* < 0.0001).

In another sensitivity analysis we explored the influence of study design (cohort vs cross-sectional) on heterogeneity, and effect estimates of meta-analyses. We separated the meta-analyses for cohort studies and cross-sectional studies. As already reported before when pooling all 18 studies together that compared COVID-19 survivors to non-COVID-19 controls (independent of the unit of measure of VO_2 peak), we observed a significantly higher VO₂ peak in the non-COVID-19 control group compared to COVID-19 survivors (SMD = 1.1, 95% CI: 0.6, 1.6; N = 1491; I² = 94%). Re-expressing the SMD to VO₂ peak values in mL/min/kg showed an MD of 7.7 mL/min/kg (95% CI: 4.3, 11.4). In the 12 cohort studies (1015 participants), non-COVID-19 controls showed higher VO₂ peak values than COVID-19 survivors $(SMD=1.4 \text{ mL/min/kg}, 95\% \text{ CI: } 0.7, 2.1; \text{ I}^2 = 95\%)$. Re-expressing the SMD to VO_2 peak values in mL/min/kg showed an MD of 9.8 mL/min/kg, 95% CI: 4.7, 14.2). In the 6 cross-sectional studies (476 participants), non-COVID-19 controls showed

Brazilian Journal of Physical Therapy 28 (2024) 101089

	Co	ontro	1	CO	VID-1	9		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.5.1 All									
Alba et al 2021	19	7.4	18	20	7	18	3.2%	-1.00 [-5.71, 3.71]	
Anastasio et al 2021	39	6	13	29	5	13	3.3%	10.00 [5.75, 14.25]	
Baratto et al 2021	23	9	18	15	6	18	3.1%	8.00 [3.00, 13.00]	
Brown et al 2022	22	9	20	17	5	40	3.3%	5.00 [0.76, 9.24]	
Cassar et al 2021 2-3	27	12	30	18	6	58	3.2%	9.00 [4.44, 13.56]	
Cassar et al 2021 6	27	12	30	21	7	46	3.1%	6.00 [1.25, 10.75]	
Costello et al 2022	47	11	16	42	5	8	2.7%	5.00 [-1.41, 11.41]	
Csulak et al 2021	53		32	55	4.5	14	3.7%	-2.00 [-4.67, 0.67]	
Komici et al 2021	49	6	11	50	3	24	3.4%	-1.00 [-4.74, 2.74]	
Ladlow et al, 2022	44	13	26	35	7	87	3.0%	9.00 [3.79, 14.21]	
Moulson et al, 2022	46	10	42	45	ģ	21	3.1%	1.00 [-3.90, 5.90]	
Pleguezuelos et al 2021	32	7	15	17	5	15		15.00 [10.65, 19.35]	
Raman et al 2021	28	6	30	19	7	58	3.6%	9.00 [6.20, 11.80]	
Singh et al 2021	34	13	10	17	4	10	2.2%	17.00 [8.57, 25.43]	
	29	8	7	20	7	7	2.2%	9.00 [1.13, 16.87]	
Varughese et al 2021 Vonbank et al 2021	29	8	50	20	7	100	2.3%		
Subtotal (95% CI)	30	0	368	25	'	537	50.0%	5.00 [2.39, 7.61] 6.18 [3.52, 8.84]	
and a second	0.047			15 /0 -				0.10 [0.02, 0.04]	-
Heterogeneity: Tau ² = 23.5				15 (P <	0.000	001); 1-	= 84%		
Test for overall effect: Z = 4	.55 (P <	0.00	001)						
1.5.2 Non-Athletes									
	4.0		10	~~	-		0.04		
Alba et al 2021		7.4	18	20	7	18	3.2%	-1.00 [-5.71, 3.71]	
Baratto et al 2021	23	9	18	15	6	18	3.1%	8.00 [3.00, 13.00]	
Brown et al 2022	22	9	20	17	5	40	3.3%	5.00 [0.76, 9.24]	
Cassar et al 2021 2-3	27	12	30	18	6	58	3.2%	9.00 [4.44, 13.56]	
Cassar et al 2021 6	27	12	30	21	7	46	3.1%	6.00 [1.25, 10.75]	
Ladlow et al, 2022	44	13	26	35	7	87	3.0%	9.00 [3.79, 14.21]	
Pleguezuelos et al 2021	32	7	15	17	5	15		15.00 [10.65, 19.35]	
Raman et al 2021	28	6	30	19	7	58	3.6%	9.00 [6.20, 11.80]	
Singh et al 2021	34	13	10	17	4	10	2.2%	17.00 [8.57, 25.43]	
Varughese et al 2021	29	8	7	20	7	7	2.3%	9.00 [1.13, 16.87]	
Vonbank et al 2021	30	8	50	25	7	100	3.7%	5.00 [2.39, 7.61]	
Subtotal (95% CI)			254			457	33.9%	7.86 [5.31, 10.41]	
Heterogeneity: Tau ² = 12.5				10 (P <	0.00	01); I² =	72%		
Test for overall effect: Z = 6	.04 (P <	0.00	001)						
1.5.3 Athletes									
Anastasio et al 2021	39	6	13	29	5	13	3.3%	10.00 [5.75, 14.25]	
Costello et al 2022	47	11	16	42	5	8	2.7%	5.00 [-1.41, 11.41]	
Csulak et al 2021	53	3.6	32	55	4.5	14	3.7%	-2.00 [-4.67, 0.67]	
Komici et al 2021	49	6	11	50	3	24	3.4%	-1.00 [-4.74, 2.74]	
Moulson et al, 2022	46	10	42	45	9	21	3.1%	1.00 [-3.90, 5.90]	
Subtotal (95% CI)			114			80	16.1%	2.39 [-2.19, 6.97]	-
Heterogeneity: Tau ² = 22.2				4 (P < 0	.000	1); ² = {	34%		
Test for overall effect: Z = 1	.02 (P =	0.31)						
Total (95% CI)			736			1074	100.0%	6.17 [4.33, 8.01]	◆
Heterogeneity: Tau ² = 22.2	6; Chi² =	187	.91, df :	= 31 (P	< 0.0	0001);1	² = 84%	-	-20 -10 0 10 20
Test for overall effect: Z = 6									Favours [COVID-19] Favours [Control]
Test for subgroup difference	es: Chi	² = 4.	22, df =	2 (P = 1	0.12).	I ² = 52	.7%		and a footion of the state of t

Fig. 2 VO2 peak values in mL/min/kg-COVID-19 survivors vs Control.

higher VO₂ peak values than COVID-19 survivors (SMD = 0.8 mL/min/kg, 95% CI: 0.2, 1.4; I^2 = 85%). Reexpressing the SMD to VO₂ peak values in mL/min/kg showed an MD of 4.8 mL/min/kg, (95% CI: 1.2, 8.1).

As already reported before when pooling all studies (cohort and cross-sectional) together, we observed a significantly higher VO₂ peak in the non-COVID-19 control group compared to COVID-19 survivors (MD = 5.4, 95% CI: 2.3, 8.4; I^2 = 88%; 13 studies). In the 8 cohort studies (539 participants), non-COVID-19 controls showed higher VO₂ peak values than COVID-19 survivors (MD=4.7 mL/min/kg, 95% CI: 0.9, 8.5; $l^2 = 88\%$). In the 8 cross-sectional studies (316 participants), non-COVID-19 controls showed higher VO₂ peak values than COVID-19 survivors (MD=6.4 mL/min/kg, 95% CI: 0.7, 12.2; N = 905, $l^2 = 89\%$).

Across 8 studies evaluating VO₂ AT that compared COVID-19 survivors to non-COVID-19 controls we found a significantly higher VO₂ AT in non-COVID-19 controls than in COVID-19 survivors (MD = 2.5 mL/min/kg, 95% CI: 1.3, 3.7; I^2 = 49%). In the 6 cohort studies (432 participants), non-COVID-19 controls showed higher VO₂ AT values than COVID-19 survivors (MD = 2.0 mL/min/kg, 95% CI: 1.2, 2.8; I^2 = 9%).

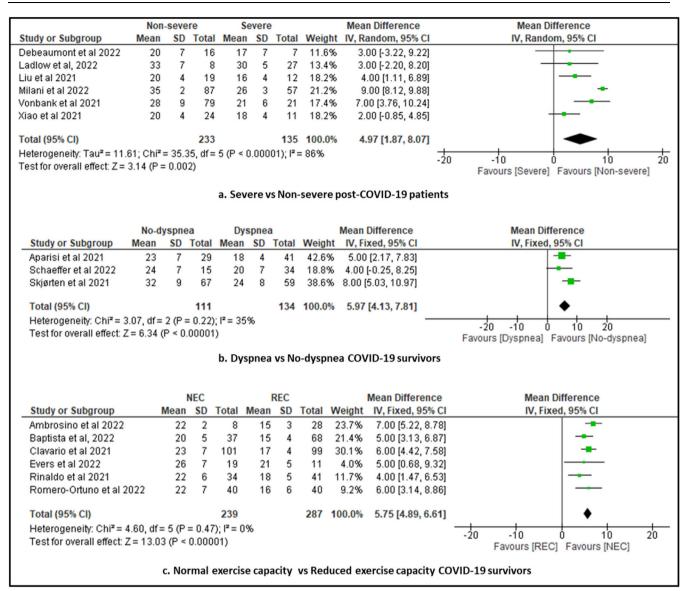


Fig. 3 VO2 peak values in mL/min/kg.

In the 8 cross-sectional studies (56 participants), non-COVID-19 controls showed higher VO₂ peak values than COVID-19 survivors (MD = 7.0 mL/min/kg, 95% CI: 2.8, 11.9; I^2 = 41%).

Discussion

Overall, the meta-analyses demonstrate that absolute and predicted VO₂ peak and VO₂ AT may be impaired in COVID-19 survivors. Our analyses also showed that lower VO₂ peak was associated with the disease severity, presence of dyspnea, and reduced exercise capacity. The MD in VO₂ peak shows inverse linear associations with age and time post-COVID-19 between COVID-19 survivors and non-COVID-19 controls. Despite the significant difference on most outcomes between COVID-19 survivors and non-COVID-19 controls, the high risk of bias among included studies and substantial heterogeneity found in the meta-analyses, can affect the certainty of the evidence generated by this review.

In our analyses, we included VO₂ peak, and VO₂ AT, important outcomes associated with prognosis in patients with cardiopulmonary conditions. Thus, these findings (a MD above 7 mL/min/kg) should be viewed as clinically relevant, considering that decrement in cardiorespiratory fitness is associated with poor prognosis and high mortality in patients with chronic conditions.^{62–67} A cardiorespiratory fitness level <5 METs (1MET = 3.5 mL/min/kg) in adults is associated with high risk for mortality; cardiorespiratory fitness levels >8 to 10 METs are associated with increased survival. Additionally, each 5 mL/min/kg lower level of cardiorespiratory fitness corresponded to a 56% higher odds of cardiovascular risk factors.² Thus, the information provided in our analysis may assist practitioners in the process of diagnosing and rehabilitating COVID-19 survivors.

Reduced cardiorespiratory fitness is the central hallmark of COVID-19 survivors. However, such abnormality is also common in different comorbidities, such as heart failure, making it difficult to differentiate the causes of impaired cardiorespiratory fitness, particularly in COVID-19 survivors. Whichever the etiology of reduced VO_2 peak in COVID-19 survivors, the underlying mechanism(s) remain unclear. However, exercise performance limiting factors can be related to impaired ventilation, impaired circulation, deconditioning, or peripheral conditions.⁵⁵

In healthy people at sea level, lung function does not limit VO₂ peak. However, in COVID-19 patients, impaired gas perfusion and impaired lung function, because of the lung infection, may contribute to the decrease in maximal cardiorespiratory fitness. A previous meta-analysis showed a prevalence of 14% in low total lung capacity, 12% in low forced vital capacity, and 7% in low forced expiratory volume in the first second.⁶⁸ On the other hand, in healthy people, peak cardiac output does limit VO₂ peak. Cardiac output is represented by stroke volume x heart rate. Although inconclusive, it is possible that chronotropic incompetence may contribute to VO₂ peak impairment, especially in the first few months of post-COVID-19 infection.⁶⁹ Bed restriction and deconditioning (low O₂ extraction, mitochondrial dysfunction, and muscles loss) can also be related to low VO2 peak in healthy people and in COVID-19 survivors.⁶⁹

This systematic review provides important information to clinical practice and research, as we warn to the magnitude of low cardiorespiratory fitness of COVID-19 survivors. We also reinforce the need of rehabilitation protocols focused on cardiorespiratory fitness of this population, respecting the condition of each patient and the adaptation to the exercise protocol. In a recent metaanalysis, Pouliopoulou et al⁷⁰ reported that rehabilitation interventions were associated with improvements in functional exercise capacity. These improvements had a 99% posterior probability of superiority when compared with current standard care.⁷⁰ Chen et al,⁷¹ investigated the possible benefits of inspiratory muscle training on mechanical and clinical outcomes. They reported that significant improvements were found in change from baseline of VO₂ max (MD: 4.54, 95% CI: 1.8, 7.3). Thus, physical rehabilitation interventions may be safe, feasible, and effective in COVID-19 patients discharged from the hospital and can improve a variety of clinically relevant outcomes."

Considering that VO_2 peak shows inverse linear associations with age and time post-COVID-19, special attention seems to be worth to be given to old people and to the timing to start the rehabilitation program. Future clinical trials should investigate if early rehabilitation can improve cardiorespiratory fitness more efficiently in these populations. Moreover, our findings reinforce the potential beneficial effect of good physical conditioning to mitigate loss in cardiorespiratory fitness post-COVID-19.

Limitations in the present systematic review need attention. Results were limited by heterogeneity among studies, insufficient standardization, and absence of control for confounders in individual studies. It is important to highlight the considerable heterogeneity found in the meta-analyses. These aspects are important and may question the certainty of the evidence generated by this review. In addition to the inclusion of different study designs (cohort and cross-sectional), clinical characteristics, such as (hospitalization, disease severity), type of population (athletes and nonathletes), and patient profile (symptomatic and asymptomatic) may have contributed to the high heterogeneity. Ultimately, sub-group and meta-regression analyses should be considered exploratory and not as proof of causality. Thus, we recommend caution in interpreting the results. On the other hand, a strength of this systematic review is the rigorous systematic review methodology that was used which was key to dealing effectively with a very heterogeneous literature. Additionally, we reported significant and non-significant comparisons, which allows a suggestion of possible determinants of VO₂ peak in COVID-19 survivors. It is worth noting that despite the inclusion of prospective and cross-sectional studies, according to the sensitivity analysis performed, the reduction in VO₂ was not influenced by the study design (cohort or cross-sectional).

Conclusion

This systematic review and meta-analysis suggest that cardiorespiratory fitness may be impaired in COVID-19 survivors, especially for those with severe disease, presence of dyspnea, and reduced exercise capacity, compared to non-COVID-19 controls. Furthermore, the degree of reduction of VO₂ peak may be inversely associated with age and time post-COVID-19. Caution is important in interpreting the results due to high heterogeneity in the meta-analyses and high risk of bias among included studies.

Conflicts of interest

The authors declare no conflicts of interest.

Funding

None

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.bjpt.2024. 101089.

References

- Raghuveer G, Hartz J, Lubans DR, et al. Cardiorespiratory fitness in youth: an important marker of health: a scientific statement from the American heart association. *Circulation*. 2020;142(7):e101-e118. https://doi.org/10. 1161/CIR.00000000000866.
- 2. Ross R, Blair SN, Arena R, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement From the American heart association. *Circulation*. 2016;134(24):e653–e699.
- Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. *JAMA*. 2009;301(19):2024–2035. https://doi.org/10.1001/jama. 2009.681.
- Ezzatvar Y, Izquierdo M, Núñez J, Calatayud J, Ramírez-Vélez R, García-Hermoso A. Cardiorespiratory fitness measured with

cardiopulmonary exercise testing and mortality in patients with cardiovascular disease: a systematic review and meta-analysis. *J Sport Health Sci.* 2021;10(6):609–619. https://doi.org/10.1016/j.jshs.2021.06.004.

- Arena R, Faghy MA. Cardiopulmonary exercise testing as a vital sign in patients recovering from COVID-19. *Expert Rev Cardio*vasc Ther. 2021;19(10):877–880. https://doi.org/10.1080/ 14779072.2021.1985466.
- de Oliveira Almeida K, Nogueira Alves IG, de Queiroz RS, et al. A systematic review on physical function, activities of daily living and health-related quality of life in COVID-19 survivors. *Chronic Illn.* 2022 17423953221089309. https://doi.org/10.1177/ 17423953221089309.
- Rahmati M, Udeh R, Yon DK, et al. A systematic review and meta-analysis of long-term sequelae of COVID-19 2-year after SARS-CoV-2 infection: a call to action for neurological, physical, and psychological sciences. J Med Virol. 2023;95(6):e28852. https://doi.org/10.1002/jmv.28852.
- Clavario P, De Marzo V, Lotti R, et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. *Int J Cardiol*. 2021;340:113–118. https://doi.org/10.1016/j. ijcard.2021.07.033.
- 9. Higgins JPT, Thomas J, Chandler J, et al. Cochrane Handbook for systematic reviews of interventions version 6.2 (updated February 2021). *Cochrane*. 2021. Available from; www.training. cochrane.org/handbook.
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71. https://doi.org/10.1136/bmj. n71.
- 11. Wells G.A., Shea B., O'Connell D., et al The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. 2012. Available at:http://www.ohri.ca/pro grams/clinical_epidemiology/oxford.htm.
- 12. Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration; 2020.
- 13. RStudio Team. RStudio: Integrated Development For R. RStudio. Boston, MA: PBC; 2020... URL; http://www.rstudio.com/.
- Ambrosino P, Parrella P, Formisano R, et al. Cardiopulmonary exercise performance and endothelial function in convalescent COVID-19 patients. J Clin Med. 2022;11(5):1452. https://doi. org/10.3390/jcm11051452.
- Baptista RB, d'Humières T, Schlemmer F, et al. Identification of factors impairing exercise capacity after severe COVID-19 pulmonary infection: a 3-month follow-up of prospective COVulnerability cohort. *Respir Res.* 2022;23(1):68. https://doi.org/ 10.1186/s12931-022-01977-z.
- Brown JT, Saigal A, Karia N, et al. Ongoing exercise intolerance following COVID-19: a magnetic resonance-augmented cardiopulmonary exercise test study. J Am Heart Assoc. 2022;11(9): e024207. https://doi.org/10.1161/ JAHA.121.024207.
- Costello BT, Climie RE, Wright L, et al. Athletes with mild COVID-19 illness demonstrate subtle imaging abnormalities without exercise impairment or arrhythmias. *Eur J Prev Cardiol*. 2022;29(6):e220–e223. https://doi.org/10.1093/eurjpc/ zwab166.
- Evers G, Schulze AB, Osiaevi I, et al. Sustained impairment in cardiopulmonary exercise capacity testing in patients after COVID-19: a single center experience. *Can Respir J*. 2022;2022: 2466789. https://doi.org/10.1155/2022/2466789.
- Gruenewaldt A, Nylander E, Hedman K. Classification and occurrence of an abnormal breathing pattern during cardiopulmonary exercise testing in subjects with persistent symptoms following COVID-19 disease. *Physiol Rep.* 2022;10(4):e15197. https://doi.org/10.14814/phy2.15197.
- 20. Lacavalerie MR, Pierre-Francois S, Agossou M, et al. Obese patients with long COVID-19 display abnormal hyperventilatory

response and impaired gas exchange at peak exercise. *Future Cardiol*. 2022;18(7):577–584. https://doi.org/10.2217/fca-2022-0017.

- Ladlow P, O'Sullivan O, Bennett AN, et al. The effect of medium-term recovery status after COVID-19 illness on cardiopulmonary exercise capacity in a physically active adult population. J Appl Physiol (1985). 2022;132(6):1525–1535. https:// doi.org/10.1152/japplphysiol.00138.2022.
- Ladlow P, O'Sullivan O, Houston A, et al. Dysautonomia following COVID-19 is not associated with subjective limitations or symptoms but is associated with objective functional limitations. *Heart Rhythm*. 2022;19(4):613–620. https://doi.org/ 10.1016/j.hrthm.2021.12.005.
- Milani M, Milani JGPO, Cipriano GFB, Cahalin LP, Stein R, Cipriano Junior G. Cardiopulmonary exercise testing in post-COVID-19 patients: where does exercise intolerance come from? *Eur J Prev Cardiol*. 2022;29(Issue Supplement_1). https://doi.org/10.1093/eurjpc/zwac056.209. zwac056.209.
- Mitrani RD, Alfadhli J, Lowery MH, et al. Utility of exercise testing to assess athletes for post COVID-19 myocarditis. *Am Heart J Plus*. 2022;14: 100125. https://doi.org/10.1016/j. ahjo.2022.100125.
- Moulson N, Gustus SK, Scirica C, et al. Diagnostic evaluation and cardiopulmonary exercise test findings in young athletes with persistent symptoms following COVID-19. Br J Sports Med. 2022. https://doi.org/10.1136/bjsports-2021-105157. bjsports-2021-105157.
- Di Paco A, Mazzoleni S, Vitacca M, Comini L, Ambrosino N. Lung function and ventilatory response to exercise in asymptomatic elite soccer players positive for COVID-19. *Pulmonology*. 2022;28(2):148–151. https://doi.org/10.1016/j.pulmoe.2021. 11.002.
- Romero-Ortuno R, Jennings G, Xue F, Duggan E, Gormley J, Monaghan A. Predictors of submaximal exercise test attainment in adults reporting long COVID Symptoms. *J Clin Med.* 2022;11 (9):2376. https://doi.org/10.3390/jcm11092376.
- Schaeffer MR, Cowan J, Milne KM, et al. Cardiorespiratory physiology, exertional symptoms, and psychological burden in post-COVID-19 fatigue. *Respir Physiol Neurobiol*. 2022;302: 103898. https://doi.org/10.1016/j.resp.2022.103898.
- Singh I, Joseph P, Heerdt PM, et al. Persistent exertional intolerance after COVID-19: insights from invasive cardiopulmonary exercise testing. *Chest*. 2022;161(1):54–63. https://doi.org/ 10.1016/j.chest.2021.08.010.
- Wood G, Kirkevang TS, Agergaard J, et al. Cardiac performance and cardiopulmonary fitness after infection with SARS-CoV-2. *Front Cardiovasc Med.* 2022;9: 871603. https://doi.org/ 10.3389/fcvm.2022.871603.
- Alba GA, Ziehr DR, Rouvina JN, et al. Exercise performance in patients with post-acute sequelae of SARS-CoV-2 infection compared to patients with unexplained dyspnea. *EClinicalMedicine*. 2021;39: 101066. https://doi.org/10.1016/j.eclinm.2021. 101066.
- Anastasio F, LA Macchia T, Rossi G, et al. Mid-term impact of mild-moderate COVID-19 on cardiorespiratory fitness in élite athletes. J Sports Med Phys Fitness. 2021. https://doi.org/ 10.23736/S0022-4707.21.13226-8.
- Aparisi Á, Ybarra-Falcón C, García-Gómez M, et al. Exercise ventilatory inefficiency in post-COVID-19 syndrome: insights from a prospective evaluation. J Clin Med. 2021;10(12):2591. https://doi.org/10.3390/jcm10122591.
- Baratto C, Caravita S, Faini A, et al. Impact of COVID-19 on exercise pathophysiology: a combined cardiopulmonary and echocardiographic exercise study. J Appl Physiol (1985). 2021;130(5):1470–1478. https://doi.org/10.1152/japplphysiol.00710.2020.
- 35. Barbagelata L, Masson W, Iglesias D, et al. Cardiopulmonary exercise testing in patients with post-COVID-19 syndrome. *Med*

Clin (Barc). 2021. https://doi.org/10.1016/j.medcli.2021.07.007. S0025-7753(21)00462-0.

- Cassar MP, Tunnicliffe EM, Petousi N, et al. Symptom persistence despite improvement in cardiopulmonary health - insights from longitudinal CMR, CPET and lung function testing post-COVID-19. *EClinicalMedicine*. 2021;41: 101159. https://doi.org/ 10.1016/j.eclinm.2021.101159.
- Cavigli L, Frascaro F, Turchini F, et al. A prospective study on the consequences of SARS-CoV-2 infection on the heart of young adult competitive athletes: implications for a safe return-toplay. *Int J Cardiol*. 2021;336:130–136. https://doi.org/ 10.1016/j.ijcard.2021.05.042.
- Clavario P, De Marzo V, Lotti R, et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. *Int J Cardiol.* 2021;340:113–118. https://doi.org/10.1016/j.ijcard. 2021.07.033.
- 39. Csulak E, Petrov Á, Kováts T, et al. The Impact of COVID-19 on the preparation for the Tokyo olympics: a comprehensive performance assessment of top swimmers. Int J Environ Res Public Health. 2021;18(18):9770. https://doi.org/10. 3390/ijerph18189770.
- Debeaumont D, Boujibar F, Ferrand-Devouge E, et al. Cardiopulmonary exercise testing to assess persistent symptoms at 6 months in people with COVID-19 who survived hospitalization: a pilot study. *Phys Ther.* 2021;101(6). https://doi.org/10.1093/ ptj/pzab099. pzab099.
- Dorelli G, Braggio M, Gabbiani D, et al. Importance of Cardiopulmonary exercise testing amongst subjects recovering from COVID-19. *Diagnostics (Basel)*. 2021;11(3):507. https://doi. org/10.3390/diagnostics11030507.
- Fikenzer S, Kogel A, Pietsch C, et al. SARS-CoV2 infection: functional and morphological cardiopulmonary changes in elite handball players. *Sci Rep.* 2021;11(1):17798. https://doi.org/ 10.1038/s41598-021-97120-x.
- Gao Y, Chen R, Geng Q, et al. Cardiopulmonary exercise testing might be helpful for interpretation of impaired pulmonary function in recovered COVID-19 patients. *Eur Respir J.* 2021;57(1): 2004265. https://doi.org/10.1183/13993003.04265-2020.
- Jahn K, Sava M, Sommer G, et al. Exercise capacity impairment after COVID-19 pneumonia is mainly caused by deconditioning. *Eur Respir J.* 2021;59(1): 2101136. https://doi.org/10.1183/ 13993003.01136-2021.
- Komici K, Bianco A, Perrotta F, et al. Clinical characteristics, exercise capacity and pulmonary function in post-COVID-19 competitive athletes. J Clin Med. 2021;10(14):3053. https:// doi.org/10.3390/jcm10143053.
- Liu M, Lv F, Huang Y, Xiao K. Follow-up study of the chest CT characteristics of COVID-19 survivors seven months after recovery. Front Med (Lausanne). 2021;8: 636298. https://doi.org/ 10.3389/fmed.2021.636298.
- Mancini DM, Brunjes DL, Lala A, Trivieri MG, Contreras JP, Natelson BH. Use of cardiopulmonary stress testing for patients with unexplained dyspnea post-coronavirus disease. *JACC Heart Fail*. 2021;9(12):927–937. https://doi.org/10.1016/j.jchf. 2021.10.002.
- Mazzucco GA, Torres-Castro R, Intelangelo L, Vila Ortiz B, Lista-Paz A. Does COVID-19 affect the exercise capacity of non-hospitalized patients? *Cureus*. 2021;13(9):e18135. https://doi.org/ 10.7759/cureus.18135.
- Milovancev A, Avakumovic J, Lakicevic N, et al. Cardiorespiratory fitness in volleyball athletes following a COVID-19 infection: a cross-sectional study. *Int J Environ Res Public Health*. 2021;18(8):4059. https://doi.org/10.3390/ijerph18084059.
- Mohr A, Dannerbeck L, Lange TJ, et al. Cardiopulmonary exercise pattern in patients with persistent dyspnoea after recovery from COVID-19. *Multidiscip Respir Med.* 2021;16(1):732. https://doi.org/10.4081/mrm.2021.732.

- Motiejunaite J, Balagny P, Arnoult F, et al. Hyperventilation as one of the mechanisms of persistent dyspnoea in SARS-CoV-2 survivors. *Eur Respir J*. 2021;58(2): 2101578. https://doi.org/ 10.1183/13993003.01578-2021.
- Oliynyk OV, Rorat M, Barg W. Oxygen metabolism markers as predictors of mortality in severe COVID-19. Int J Infect Dis. 2021 Feb;103:452–456. https://doi.org/10.1016/j.ijid.2020. 12.012.
- Pleguezuelos E, Del Carmen A, Llorensi G, et al. Severe loss of mechanical efficiency in COVID-19 patients. J Cachexia Sarcopenia Muscle. 2021;12(4):1056–1063. https://doi.org/ 10.1002/jcsm.12739.
- 54. Raman B, Cassar MP, Tunnicliffe EM, et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. *EClinicalMedicine*. 2021;31: 100683. https:// doi.org/10.1016/j.eclinm.2020.100683.
- Rinaldo RF, Mondoni M, Parazzini EM, et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. *Eur Respir J*. 2021;58(2): 2100870. https://doi.org/ 10.1183/13993003.00870-2021.
- 56. Skjørten I, Ankerstjerne OAW, Trebinjac D, et al. Cardiopulmonary exercise capacity and limitations 3 months after COVID-19 hospitalisation. *Eur Respir J.* 2021;58(2): 2100996. https://doi. org/10.1183/13993003.00996-2021.
- 57. Szekely Y, Lichter Y, Sadon S, et al. Cardiorespiratory abnormalities in patients recovering from coronavirus disease 2019. J Am Soc Echocardiogr. 2021;34(12):1273–1284. https://doi.org/ 10.1016/j.echo.2021.08.022. .e9.
- Xiao K, Yang H, Liu B, et al. Antibodies can last for more than 1 year after SARS-CoV-2 infection: a follow-up study from survivors of COVID-19. Front Med (Lausanne). 2021;8: 684864. https://doi.org/10.3389/fmed.2021.684864.
- Vannini L, Quijada-Fumero A, Martín MPR, Pina NC, Afonso JSH. Cardiopulmonary exercise test with stress echocardiography in COVID-19 survivors at 6 months follow-up. *Eur J Intern Med.* 2021;94:101–104. https://doi.org/10.1016/j.ejim.2021.10. 004.
- Varughese RA, Lam GY, Brotto A, et al. Reduced exercise tolerance in long-COVID patients. Am J Respir Crit Care Med. 2021;203(9). https://doi.org/10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A4116.
- Vonbank K, Lehmann A, Bernitzky D, et al. Predictors of prolonged cardiopulmonary exercise impairment after COVID-19 infection: a prospective observational study. *Front Med (Lausanne)*. 2021;8: 773788. https://doi.org/10.3389/fmed.2021. 773788.
- Barbagelata L, Masson W, Bluro I, Lobo M, Iglesias D, Molinero G. Prognostic role of cardiopulmonary exercise testing in pulmonary hypertension: a systematic review and meta-analysis. Adv Respir Med. 2022. https://doi.org/10.5603/ARM.a2022.0030.
- 63. Stubbe B, Ittermann T, Grieger A, Walther C, Gläser S, Ewert R. Value of cardiopulmonary exercise testing in prognostic assessment of patients with interstitial lung diseases. J Clin Med. 2022;11(6):1609. https://doi.org/10.3390/jcm11061609.
- 64. Wadey CA, Weston ME, Dorobantu DM, et al. The role of cardiopulmonary exercise testing in predicting mortality and morbidity in people with congenital heart disease: a systematic review and meta-analysis. *Eur J Prev Cardiol*. 2022;29(3):513–533. https://doi.org/10.1093/eurjpc/zwab125.
- da Luz Goulart C, Oliveira MR, Sendín FA, Mendes RG, Arena R, Borghi-Silva A. Prognostic value of key variables from cardiopulmonary exercise testing in patients with COPD: 42-month follow-up. *Respir Med*. 2022;197: 106856. https://doi.org/ 10.1016/j.rmed.2022.106856.
- 66. Arena R, Myers J, Abella J. Defining the optimal prognostic window for cardiopulmonary exercise testing in patients with heart

failure. Circ Heart Fail. 2010;3(3):405-411. https://doi.org/ 10.1161/CIRCHEARTFAILURE.109.906446.

- 67. Sato T, Yoshihisa A, Kanno Y, et al. Cardiopulmonary exercise testing as prognostic indicators: comparisons among heart failure patients with reduced, mid-range and preserved ejection fraction. *Eur J Prev Cardiol*. 2017;24(18):1979–1987. https:// doi.org/10.1177/2047487317739079.
- Long Q, Li J, Hu X, Bai Y, Zheng Y, Gao Z. Follow-ups on persistent symptoms and pulmonary function among post-acute COVID-19 patients: a systematic review and meta-analysis. *Front Med (Lausanne)*. 2021;8: 702635. https://doi.org/10.3389/fmed.2021.702635.
- 69. Schwendinger F, Knaier R, Radtke T, Schmidt-Trucksäss A. Low cardiorespiratory fitness post-COVID-19: a narrative review.

Sports Med. 2023;53(1):51-74. https://doi.org/10.1007/ s40279-022-01751-7.

- Pouliopoulou DV, Macdermid JC, Saunders E, et al. Rehabilitation interventions for physical capacity and quality of life in adults with post-COVID-19 condition: a systematic review and meta-analysis. JAMA Netw Open. 2023;6(9): e2333838. https://doi.org/10.1001/jamanetworkopen.2023.33838.
- Chen Y, Liu X, Tong Z. Can inspiratory muscle training benefit patients with COVID-19? A systematic review and meta-analysis. J Med Virol. 2023;95(8):e28956. https://doi.org/10.1002/jmv.28956.
- Rahmati M, Molanouri Shamsi M, Woo W, et al. Effects of physical rehabilitation interventions in COVID-19 patients following discharge from hospital: a systematic review. *J Integr Med*. 2023;21 (2):149–158. https://doi.org/10.1016/j.joim.2023.01.003.